
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Survivability and performance optimization in
communication networks using network coding
Mirzad Mohandespour
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Mohandespour, Mirzad, "Survivability and performance optimization in communication networks using network coding" (2015).
Graduate Theses and Dissertations. 14513.
https://lib.dr.iastate.edu/etd/14513

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14513?utm_source=lib.dr.iastate.edu%2Fetd%2F14513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Survivability and performance optimization in communication networks using

network coding

by

Mirzad Mohandespour

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Ahmed E. Kamal, Co-Major Professor

Manimaran Govindarasu, Co-Major Professor

Aditya Ramamoorthy

Arun K. Somani

Mani Mina

Zhengdao Wang

Iowa State University

Ames, Iowa

2015

Copyright c© Mirzad Mohandespour, 2015. All rights reserved.



www.manaraa.com

ii

DEDICATION

To

Akram & Mostafa



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1. GENERAL INTRODUCTION . . . . . . . . . . . . . . . . . . . 1

1.1 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2. NETWORK CODING . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 3. 1+N PROTECTION IN POLYNOMIAL TIME: A HEURIS-

TIC APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Models and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Problem Statement and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 4. MULTICAST 1+1 PROTECTION: THE CASE FOR SIM-

PLE NETWORK CODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



www.manaraa.com

iv

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Multicast protection with instantaneous recovery . . . . . . . . . . . . . 31

4.4.2 Related connectivity problems . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Assumptions and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Optimal Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.1 Single link failure protection . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.2 Single node failure protection . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 5. RATE, ENERGY, AND DELAY TRADEOFFS IN WIRE-

LESS MULTICAST: NETWORK CODING VS. ROUTING . . . . . . . . 44

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Network coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6.1 Multicast rate region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.3 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.1 Multicast rate region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7.3 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Illustrative Examples and Observations . . . . . . . . . . . . . . . . . . . . . . 58

5.8.1 Observation: network coding theorem in joint optimization framework . 63



www.manaraa.com

v

5.9 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . 63

5.9.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9.2 Maximizing the rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9.3 Minimizing energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9.4 Minimizing delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9.5 Maximum rate on larger networks . . . . . . . . . . . . . . . . . . . . . 72

5.9.6 Analytical insight on MISs . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CHAPTER 6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Network Coding for Survivability in Backbone Networks . . . . . . . . . . . . . 76

6.2 Network Coding for Performance Optimization in Wireless Networks . . . . . . 78

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

vi

LIST OF TABLES

Table 3.1 1+N cost reduction over 1+1 in 3 different networks. . . . . . . . . . . 24

Table 3.2 Cost of 1+N : Heuristic vs. ILP. . . . . . . . . . . . . . . . . . . . . . . 24

Table 4.1 Average/worst case percentage of extra cost (vs. optimal) . . . . . . . 41

Table 5.1 Properties of sample grid networks. In 4-5 grid*, simple arcs are used

instead of hyperarcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 5.2 Average rate of different algorithms under network coding. . . . . . . . 66

Table 5.3 Maximum rate for 100 session mapped to the center of a larger 10-10 grid. 73



www.manaraa.com

vii

LIST OF FIGURES

Figure 2.1 Butterfly network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2 Relay network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3 An example of robust network coding . . . . . . . . . . . . . . . . . . . 8

Figure 3.1 An example of 1+N protection . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.2 Total cost of 1+N and 1+1 in 14-node NSFNET. . . . . . . . . . . . . 21

Figure 3.3 1+N cost reduction compared to 1+1 in 14-node NSFNET. . . . . . . 21

Figure 3.4 Total cost of 1+N and 1+1 in 11-node COST239. . . . . . . . . . . . . 22

Figure 3.5 1+N cost reduction compared to 1+1 in 11-node COST239. . . . . . . 22

Figure 3.6 Total cost of 1+N and 1+1 in 14-node complete graph. . . . . . . . . . 22

Figure 3.7 1+N cost reduction compared to 1+1 in 14-node complete graph. . . . 23

Figure 3.8 1+N cost reduction compared to 1+1 in 3 different networks. . . . . . 23

Figure 4.1 Unicast 1+1 protection vs. OPP . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.2 Required switching at intermediate node w . . . . . . . . . . . . . . . . 29

Figure 4.3 Multicast 1+1 protection using merging flows . . . . . . . . . . . . . . 31

Figure 4.4 COST239 network: unit link cost . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.5 COST239 network: physical distance as link cost . . . . . . . . . . . . 42

Figure 4.6 COST239+ network: physical distance as link cost . . . . . . . . . . . 43

Figure 5.1 Joint scheduling and parameter optimization model. . . . . . . . . . . 54

Figure 5.2 The example 3-3 grid network. All nodes have unit transmission and

interference ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.3 Maximum rate with network coding: optimal scheduling. . . . . . . . . 60



www.manaraa.com

viii

Figure 5.4 Maximum rate with network coding: (a) scheduled capacities, (b) flows

to the first terminal (node 5), (c) flows to the second terminal (node 7).

Multicast rate = 3/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.5 Maximum rate with routing: (a) 5 MISs shown in different colors, (b)

scheduled capacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.6 Maximum rate with routing: 4 multicast trees each sending a rate of

1/8. Multicast rate = 4/8. . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.7 4-5 grid network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.8 Maximum rate: routing vs. network coding. . . . . . . . . . . . . . . . 67

Figure 5.9 Energy as a function of rate demand. . . . . . . . . . . . . . . . . . . . 68

Figure 5.10 Minimum energy for different fractions of maximum rate: network cod-

ing vs. routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.11 Delay as a function of rate demand. . . . . . . . . . . . . . . . . . . . . 71

Figure 5.12 Flow on a single path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.13 Scheduling 3 flow paths. (a) Two paths end in the same color (red).

(b) Top and bottom paths are extended by 2 hops; All paths end in

different colors. Maximum flow of 1 is achieved by 3 independent sets

(red, green, and blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



www.manaraa.com

ix

ACKNOWLEDGEMENTS

I would like to extend my sincere gratitude to my parents Akram Shiravi and Mostafa

Mohandespour, for all the moments they could have pursued their own personal dreams, instead

they chose to make sure I had the opportunity to pursue my own; my wife, Mina Farahbakhsh,

for her continued love and support during this long course of study; Dr. Ahmed Kamal, who

made it possible for me to come to the US in the first place and patiently guided me through

years of this program; Dr. Manimaran Govindarasu, who supported me when I needed help and

allowed me to pursue new research directions; Dr. Zhengdao Wang, for his deep and elaborate

feedback and comments that helped improve my research; Dr. Mani Mina, who has been like a

brother and a mentor for me and has always inspired me; Dr. Arun K. Somani, for his feedback

on my research and for what he taught me as a teaching assistant; Dr. Aditya Ramamoorthy,

for being a great teacher and for the network coding class that built the foundation of my

research.



www.manaraa.com

x

ABSTRACT

The benefits of network coding are investigated in two types of communication networks:

optical backbone networks and wireless networks. In backbone networks, network coding is

used to improve survivability of the network against failures. In particular, network coding-

based protection schemes are presented for unicast and multicast traffic models. In the unicast

case, network coding was previously shown to offer near-instantaneous failure recovery at the

bandwidth cost of shared backup path protection. Here, cost-effective polynomial-time heuris-

tic algorithms are proposed for online provisioning and protection of unicast traffic. In the

multicast case, network coding is used to extend the traditional live backup (1+1) unicast

protection to multicast protection; hence called multicast 1+1 protection. It provides instan-

taneous recovery for single failures in any bi-connected network with the minimum bandwidth

cost. Optimal formulation and efficient heuristic algorithms are proposed and experimentally

evaluated. In wireless networks, performance benefits of network coding in multicast transmis-

sion are studied. Joint scheduling and performance optimization formulations are presented for

rate, energy, and delay under routing and network coding assumptions. The scheduling compo-

nent of the problem is simplified by timesharing over randomly-selected sets of non-interfering

wireless links. Selecting only a linear number of such sets is shown to be rate and energy

effective. While routing performs very close to network coding in terms of rate, the solution

convergence time is around 1000-fold compared to network coding. It is shown that energy

benefit of network coding increases as the multicast rate demand is increased. Investigation

of energy-rate and delay-rate relationships shows both parameters increase non-linearly as the

multicast rate is increased.
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CHAPTER 1. GENERAL INTRODUCTION

Information technology has been changing the ways humans interact and live since its birth

in the last decades of 20th century. The very visible example is the way we use smartphones

for an increasing number of applications and services: listening to music, reading the news,

staying connected via social networks, sharing media, shopping, navigation, health monitor-

ing, and finally making phone calls. From a computer engineering perspective, what enables

a smartphone (as an example) to offer such range of services is not merely the integration of

computing power (hardware and software) in a small handheld device; It also depends on the

telecommunication network that provides connectivity and data transmission. Today, telecom-

munication networks may be rather invisible from a user point of view as they mainly rely on

fibers under the ground or waves in the air. Optical fiber networks provide the backbone of

what we know as the Internet: connecting residential and business buildings, cities, countries,

and continents. At the same time, wireless networks have emerged as crucial in the access

section of network where mobile users demand connectivity.

Telecommunication networks are, of course, not limited to the Internet. However, as we have

moved into 21st century, there seems to be a trend in using the Internet for other traditionally

non-IP communications [10]. Services like VoIP and IPTV use the ubiquity offered by the

Internet platform to deliver content to users regardless of their location [91]. It is on the same

platform that Internet of Things is envisioned to connect countless number of new smart objects

to the existing Internet [7][58][76].

The Internet, therefore, is set to provide even higher bandwidths with more reliability and

connectivity. On the other hand, such services would still need to be economically affordable

and sustainable to succeed in the market. The increasing demand for data would require higher

bandwidth offered by service providers and better utilization of available bandwidth. As the
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bandwidth of network links increases, specially in backbone networks, so does the cost of any

disruption or failure. Therefore, networks need to also be resilient: to provide an acceptable

level of service even in the event of failures. Backbone networks may even demand the same level

of service in the event of failures, i.e., they have to be survivable. In this case, network traffic

should be protected against failures, e.g., diverse redundant routes may be used to guarantee

continued service in the case of a single link failure.

Another important performance parameter is energy. A study estimates that on a worldwide

average, the Internet is going to amount for 7% of a country’s electrical power consumption

[22] with the access networks taking up to 70% of total Internet energy consumption. This

is important both in terms of the cost of energy and the carbon footprint of communication

networks. This has led to a new domain of research focused on green networking [12]. In the

wireless domain, energy consumption is more critical due to the limited battery resource on

mobile devices [16].

As a result, researchers in both academia and industry are challenged to find new ways to

improve computer networks in terms of various performance parameters including bandwidth,

resilience, and energy. One of the promising ideas that fundamentally challenges the status quo

in communication networks is Network Coding [6]. In simple words, network coding generalizes

the routing logic in communication networks. In addition to traditional routing functions of

store, forward, and duplicate, network coding lets outgoing data at a network node to be a

function of incoming data. The coding in network coding refers to computing such functions.

Since network coding is a generalization of routing, it logically follows that a network coding-

capable network would perform at least as good as the corresponding routing-capable network.

Moreover, researchers have been able to show scenarios where network coding increases the

achievable transmission rate, decreases energy consumption for a given demand, or improves

other quality of service parameters. One of the main research challenges, on the other hand,

is to investigate the tradeoffs of network coding and routing: determining the benefits of

network coding and weighting them against the cost of adding network coding capability to

traditional networks. Therefore, evaluating the benefits of network coding in different networks

(e.g., optical and wireless) and traffic models (e.g., unicast and multicast) has been subject of
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research. This dissertation contributes to network coding research by further investigation

of network coding benefits in survivability and performance optimization in communication

networks.

1.1 Dissertation Organization

The dissertation contains the outcome of network coding research performed by the author

under supervision and with the support provided by Dr. Ahmed E. Kamal and Dr. Manimaran

Govindarasu. In the first component, we investigated the application of network coding in

improving the survivability of optical and backbone networks. The second component discusses

benefits of network coding in wireless mesh networks in terms of rate, energy, and delay. The

next chapters are organized as follows:

• Chapter 2 is dedicated to an introduction to network coding. We discuss simple examples

showing the advantage of network coding in terms of rate, energy, and delay. We also

explain the idea of robust network coding using an example. This chapter serves merely

as an introduction and the interested reader may refer to various network coding tutorials

(e.g., [32]) for further study.

• Chapter 3 represents our work on application of network coding in protection of unicast

connections in optical networks. The work is based on the idea of 1+N protection [41].

In its simplest form, 1+N is a network coding generalization of the routing-based 1:N

protection. The complexity of finding minimum cost 1+N solution is discussed. Due to

NP-hard nature of the problem, optimal results may only be found in offline manner. We

contribute by proposing heuristic, online algorithms for provisioning and protection of

multiple unicast connections using 1+N protection. The work includes time analysis of

algorithms, experimental evaluation of the solution cost of our algorithms, and comparison

with routing-based 1+1 protection and optimal offline results. An analytical evaluation

of the cost of the network coding solution is also provided.

• Chapter 4 is an original work on extending the idea of 1+1 protection to protect optical

multicast connections using simple network coding. If 1+1 protection is directly applied
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to multicast protection, the solution may include nodes that receive two or more identical

incoming flows via diverse incoming links. In a routing solution, such nodes can only select

and forward one incoming flow. Upon an upstream failure, the node must reconfigure

its switch to forward another working flow. Network coding is shown to eliminate this

problem by combining the incoming flows via logical OR operation. Since minimum

cost multicast 1+1 solution is NP-hard to find, we present online heuristic algorithms

in addition to the offline optimal formulation. The work includes study of related work

including related connectivity problems, performance evaluation of heuristic algorithms,

and comparison with offline optimal solution and a well-known routing-based algorithm.

• Chapter 5 presents the second component of our research, i.e., network coding benefits in

wireless mesh networks. We investigate the advantages of using network coding in a wire-

less mesh network with limited bandwidth and energy resources. In particular, our work

relies on the well-established theory of randomized network coding for multicast commu-

nication. We present joint formulation of scheduling interference-free wireless links and

optimizing different performance parameters (namely rate, energy, and delay) in network

coding and routing paradigms. We use these formulations to investigate rate-energy and

rate-delay relationships in optimal settings. By investigating such dependencies under

routing and network coding assumptions, we are able to isolate and show scenarios where

network coding provides energy benefits. On the other hand, we show how both en-

ergy and delay change as non-linear functions of multicast rate demand; higher multicast

rates result in increasingly more energy consumption and delay. We explain how optimal

scheduling of wireless links is a hard sub-problem in the discussed performance optimiza-

tion problems. In order to reduce the complexity of scheduling component, heuristic

scheduling algorithms are proposed. We further show the effectiveness of scheduling

heuristics experimentally and support the experimental results by theoretical insights.

• Chapter 6 concludes the dissertation. A summary of contributions, achieved benefits

through network coding, and future directions is presented.
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CHAPTER 2. NETWORK CODING

The idea of network coding was presented in the fundamental work of Ahlswede et al. [6].

Network coding allows the outgoing flow of a node to be a function of its incoming flows.

Network coding, therefore, extends the store-forward routing logic by enabling nodes to com-

pute and transmit functions of incoming data. The main contribution can be summarized

as max-flow min-cut theorem for network information flow (also referred to as main theorem

of network coding). Simply put, the theorem states that given a multigraph G(V,E) and a

multicast connection with source s, and a set of k destination nodes {d1, d2, ..., dk}, multicast

rate r = min
i

(maxflow(s, di)) is achievable under network coding. Here, V denotes the set

of vertices, E is the set of edges, and maximum flow from s to each destination di is denoted

by maxflow(s, di). Multicast rate cannot be higher than maximum flow from source to each

destination. Therefore, it is upper-bounded by smallest maximum flow. The theorem proves

that the upper-bound is, in fact, achievable.

In the next step Li et al. [59] showed that the multicast rate r can be achieved under linear

network coding, i.e., when nodes generate linear functions of their incoming flows. In [53], an

algebraic approach to network coding was introduced. The idea is to extract global coding

matrices based on local coding vectors. Destination nodes can retrieve the original data once

a full rank matrix of coefficients is received. In [35], authors propose algorithms to construct

deterministic network codes in polynomial time. [64] shows that random linear network cod-

ing is capacity achieving in single unicast and single multicast packet networks. The paper

addresses packet-level network coding as compared to symbol-level network coding. Packets

experience erasure instead of error since network layer drops packets received in error, packet

transmissions are not synchronized the way symbols are, i.e., time is not slotted, and packets

carry side-information or header which could be used to store network coding coefficients.
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Butterfly network The simplest example for the demonstration of network coding is

the butterfly network. As figure 2.1(a) shows, butterfly network is used to model a multicast

connection with source s and destinations d1 and d2. Suppose each directed edge has unit

capacity. Under routing, the multicast rate would be 1.5. However, if intermediate node u

is capable of generating a linear combination of data received on incoming edges, then the

multicast rate of 2 units per second is achievable. Figure 2.1(b) shows the network coding

example. Source s sends two data units a and b. Intermediate node u generates a⊕b. Therefore,

each destination would be able to decode both data units. For instance, d1 receives a and

a ⊕ b. By performing an XOR operation, d1 can retrieve b. It is not difficult to verify the

main theorem of network coding here. Maximum flow from source to each destination is 2.

Therefore, a multicast rate of 2 is achievable using network coding.

(a) (b)

Figure 2.1 Butterfly network

Relay network In a wireless network, broadcast links are used to transmit the same

data to more than one receiver. In routing model, broadcast transmission can replace multiple

single-cast transmissions. In network coding, the same broadcast functionality may be used

to further transmit coded data. Figure 2.2 shows how routing and network coding compare

in a simple relay network. Node u wants to send data unit α to node v via relay node r.

Symmetrically, node v has data unit β to send to u via r. There are some assumptions:
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transmission range of u and v does not allow direct communication but only through r, there

is a single lossless channel, and each node has a single transceiver. Figure 2.2(a) shows how

under these assumptions and routing, both data units can be delivered. In each time step, only

one data unit (either α or β) can be sent over a single hop. As a result, it takes four time steps

and four transmissions to complete the communication under routing.

If relay node r is capable of coding α and β, the number of transmissions can be reduced to

three. As Figure 2.2(b) shows, after two time steps, r has both data units. Relay r then simply

XOR codes the two data units into α⊕ β. A single broadcast transmission is then enough to

make sure both u and v have enough equations to solve for their intended data. In the case

of u, for instance, it already has data unit α (its own data). Having received α ⊕ β, node

u can solve for v. In this example, network coding can be seen as offering higher symmetric

end-to-end rate. Instead of rate maximization, the benefit of network coding can be interpreted

in the context of energy minimization. Simply put, network coding gets the job done with one

less required transmission, which in this case is 25% less. Yet another way to look at the same

benefit is in terms of delay minimization. This is straightforward as network coding requires

one less transmission.

It is important to note that benefits of network coding come at a cost, i.e., computation

cost. In other words, network coding trades transmissions with coding/decoding operations.

In the relay example, one less transmission comes at the cost of one coding and two decoding

operations. However, energy-wise such simple computations are considered less costly when

compared to a wireless transmission.

ru v!

ru v!

ru vβ

ru vβ

ru v!

ru vβ

ru v

!⊕β

(a)

ru v!

ru v!

ru vβ

ru vβ

ru v!

ru vβ

ru v

!⊕β

(b)

Figure 2.2 Relay network
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Robust network coding Robust network coding, introduced by Koetter and Médard

[53], is conceptually an extension of main network coding theorem to the case where edges are

subject to failure. Such failures are modeled by removal of edges from the multigraph. Let us

define a failure pattern f as a set of links failing together. One can apply the main theorem of

network coding to Gf (V,E\f) to find the achievable rate rf . Robust network coding extends

this observation to a collection of failure patterns F . In particular, not only multicast rate of

rF = min
f∈F

(rf ) is achievable under F but also there is a linear static network code that achieves

this rate.

In other words, authors propose an algorithm for designing static (i.e. fixed) coding functions

at intermediate nodes such that after occurrence of any failure pattern f ∈ F , all destination

nodes would still be able decode all transmitted data symbols. The only requirement is that

symbols are chosen from a finite field of size at least rF .k.|F |. Other researchers have since

contributed to robust network coding by improving the bound on the field size and proposing

better polynomial algorithms (e.g. [35]).

(a) (b) (c) (d)

Figure 2.3 An example of robust network coding

Let us demonstrate the idea of robust network coding with a simple example. Figure 2.3(a)

shows a multicast network with source s and two destination nodes d1 and d2. Assuming edges

are unit capacity, maximum flow form s to each destination is 3 (Figures 2.3(b) and 2.3(c)).

Moreover each maximum flow is carried by 3 edge-disjoint paths. Now consider the problem

of single edge failure protection. A single edge failure would reduce the maximum flow to
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at least one of destinations to 2. Therefore the multicast rate is dropped to 2 under single

edge failure. A robust network coding algorithm would assign static linear network coding

functions to network nodes, such that multicast rate of 2 is always achieved, no matter which

edge fails. Figure 2.3(d) shows linear network coding functions at each coding node. Besides

the source, there are only two other coding nodes i.e. only two nodes have more than one

incoming flow. Other intermediate nodes would just forward the incoming flow (not shown in

the figure). Multicast rate of 2 requires two units of data to be transmitted from s to both d1

and d2. We denote such two units of data by a and b. Three linear functions are generated at

s: f1(a, b), f2(a, b), and f3(a, b) . Coding nodes u and v generate functions f12 (a function of

f1 and f2) and f23 (a function of f2 and f3). Ultimately each destination would receive 3 linear

functions in two variables, a and b. For example d1 receives f1, f12, and f23. Static robust

code design guarantees that given any single edge failure, at least two out three functions are

linearly independent such that each destination would be able to decode both data units a and

b. This neither involves any change is the coding functions nor rerouting of the flows, hence

achieving instantaneous failure recovery. Note that in a traditional routing model, multicast

rate of 2 is not always achievable under single edge failure. Moreover in the cases where it is

achievable, it involves rerouting 1.

Network coding as technology Given the potential applications of network coding,

one would expect research efforts to gradually result in technology that can improve real-world

communication networks. Here, we look at some of the recent developments.

Since 2013, Internet Research Task Force (IRTF) has started a research group (RG) on

network coding [34]. The charter indicates interest in areas where Internet can benefit from

network coding and current status of practical implementations of network coding. One of the

current ongoing publications is a network coding taxonomy [28].

In the industry section, Code On Technologies is a company founded by some of the influ-

ential researchers in network coding [3]. Since 2011, Cone On has been working of producing

technology based on network coding. Given various potential applications of network coding,

1Based on [45].
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the company has developed industrial partnerships to offer an ecosystem of network coding-

based services. Partnering companies offer a range of services: software libraries for network

coding such as Kodo [73] by Steinwurf [5], cloud services by Danish-based start-up Chocolate

Cloud [2], faster WiFi services for venues and events by APSI WiFi [1], and more. Microsoft

corporation also launched a research project on using network coding for internet-scalable file

sharing and distribution (see project Avalanche [31][4]).
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CHAPTER 3. 1+N PROTECTION IN POLYNOMIAL TIME: A

HEURISTIC APPROACH

Modified from a paper published in the proceedings of GLOBECOM 2010 [69].

3.1 Abstract

The generalized 1+N protection [42], protects N unicast connections by a single Steiner

tree connecting all end points of the connections. By sending network coded packets on the

protection Steiner tree in parallel with the working traffic, 1+N is able to recover from any

single link failure without enduring the delay from switching to the backup path. Optimal cost

provisioning and 1+N protection of a given set of connections is an NP-hard problem comprising

of three NP-hard subproblems: partitioning of the connections, finding edge disjoint primary

paths and Steiner tree protection circuit for the subset of connections in each partition. In this

paper a polynomial time heuristic algorithm for 1+N protection is proposed which combines

heuristic steps to address the three NP-hard components of the problem. Our simulations show

that the heuristic algorithm provides average cost reduction of 29.2% and 18.5% compared to

1+1 protection in COST239 and NSFNET networks. An asymptotic bound is also derived for

the case of complete graph networks which shows that 1+N can achieve maximum of 66.6%

cost improvement compared to 1+1. When compared to the optimal 1+N solution from ILP

formulation, the heuristic algorithm increases the cost no more than 13%.

3.2 Introduction and Related Work

The 1+N protection method ([40][41]) protects multiple unicast connections against single

link failures by performing network coding ([6]) over a single p-cycle ([79]) as the backup circuit.
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Compared to the traditional 1:N protection, the application of network coding allows 1+N to

provide lower failure recovery time while using the same backup capacity. The connections

have to be provisioned using link disjoint paths. The p-cycle which protects these connections

passes through all end points of the connections and has to also be link disjoint from all the

connections. The connections and p-cycle itself are bidirectional and are assumed to be of

the same capacity. Each end point receives and transmits coded backup data in two opposite

directions on the p-cycle (called half p-cycles). Upon the failure of a connection (in result of

a single link failure), 1+N scheme makes sure that end points of the corresponding connection

can recover their intended data (for a specific round of communication) simply by xoring the

coded data received on the two half p-cycles and their own data (of the same round).

In [43], the author extends 1+N scheme to protect against multiple link failures. In order

to protect a group of connections against M simultaneous link failures, M link disjoint p-cycles

are used. The idea is to have enough linearly independent equations received at each end point

of each failed connection so that the end points can recover their intended data by solving the

system of equations.

In [44] and [42], the single failure protection version of 1+N is extended to a more general

protection circuit which might not necessarily be a cycle. Hence, the constraint of having a

p-cycle as the backup circuit is relaxed. While [44] considers only unidirectional connections

and gives a general description of the protection circuit, in [46], the idea of 1+N protection

was extended to overlay protection. The paper addresses multiple link failures in addition to

single link failure, and offers simpler protection circuit. In [60], the idea is further extended

to protect again adversarial errors in addition to link failures. In [42], the authors show that

the optimal 1+N protection circuit for a given set of bidirectional unicast connections is a tree.

More specifically it is a Steiner Minimal Tree (SMT) that connects all the end points of the

connections and has the same bidirectional bandwidth as the connections. To guarantee single

link failure protection, the connections have to be provisioned using link disjoint paths and the

Steiner tree must also be link disjoint from all the connections. The authors further show how

1+N can actually be implemented on top of the Steiner tree by rooting the tree at one specific
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node, referred to as node X, and defining two flow directions with respect to node X: from the

leaf nodes toward X (upstream) and from X toward leaf node (downstream).

In the upstream direction, each end point of each bidirectional connection locally xors the

transmitted and received data packets corresponding to each communication round. These

locally coded packets are sent toward the node X on the Steiner tree. Each non-leaf node

simply xors all incoming coded packets (and its locally coded packet if it is in fact an end

point) into one packet and sends it up toward the node X. Ultimately the node X xors all the

coded packets it receives. Under normal failure-free conditions, node X will simply get a zero

packet; since data packets coming from two end points of the each connection will cancel each

other. In the case of a single failure, end points of the failed connection will receive nothing

(a zero packet) from the other end point and their locally coded packets would simply be their

own data packet for that communication round. Therefore once all coded data packets reach

the node X and added together, the node X will be left with one final packet which is the xor

of two data packets sent from end points of the failed connection.

While the upstream information flow involves collection and coding of data packets, in the

reverse direction node X simply sends the final packet toward leaf nodes and each intermediate

node just forwards the received packet in that direction; no coding occurs. End points of

the failed connection can then recover their intended data for each communication round by

adding the received coded data on the Steiner tree in the downstream direction to their own

data packet of the same round.

Figure 3.1 gives an example 1+N protection scenario in which three connections (S1, D1),

(S2, D2), and (S3, D3) are protected using a Steiner tree subgraph. For simplicity, the Steiner

tree is shown to be symmetric around the node X. As the figure shows, there is a failure on

working path of connection (S2, D2); D2 receives nothing from S2. In other words, a zero is

received at D2 instead of data packet b. The sum expressions on each link represent the coded

packets in the upstream direction. The node X adds two received upstream packets, a⊕ b⊕ c

and a⊕c, to get b. It then sends b back in the downstream direction to all destinations. Clearly,

D2 is the only one in need of b (for simplicity, only path to D2 is shown). The same example

can be extended for protection of bidirectional connections.
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1+N

12 / 61

S1

S2

S3

D1

D2

D3

X

a⊕b⊕c

a

b

c

a⊕c b

Figure 3.1 An example of 1+N protection

The preceding 1+N scheme provides 100% protection against any single link failure. Com-

pared to traditional 1:N protection technique which acheives the same protection level at the

same cost, it offers the advantage of having much lower recovery time. Compared to 1+1 pro-

tection technique which offers instantaneous recovery from single failures, 1+N presents near

instantaneous recovery at lower cost: N connections are protected by single protection circuit

in 1+N while each connection requires a dedicated disjoint protection path in 1+1.

Optimal cost 1+N solution, however, is not easy to find. Simply trying to protect all

connections together will not necessarily give the optimal cost (it could even be infeasible).

The first step, therefore, is to partition the set of connections. The subset of connections in

each partition are then protected together. To find the optimal partitioning is NP-hard [8].

Even after partitioning is done, provisioning link disjoint paths and Steiner tree protection of

the subset of connections in each partition are still NP-hard problems [30][84].

Therefore we revert to polynomial time heuristic algorithms to solve the three NP-hard

components of the problem. The suboptimal cost of 1+N protection is then compared to

optimal cost of 1+1 for real world networks. To have an idea of how well those heuristic

algorithms perform compared to the optimal 1+N protection, an analytical-experimental study

is presented for the case of complete graphs.
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Section 3.3 introduces basic models and assumptions. In Section 3.4 problem statement

and algorithm design are presented. Simulation results and experimental comparison between

1+N and 1+1 are shown in Section 3.5. Our analytical bound on the performance of 1+N

compared to 1+1 is given in Section 3.6. Section 3.7 concludes the paper.

3.3 Models and Assumptions

An optical network is modeled as an undirected graph G(V,E) with V as the set of nodes

and E as the set of undirected edges. Each edge represents a fiber link. Edge capacity represents

the number of wavelength channels per fiber link. All edge capacities are assumed to be equal.

A set of κ bidirectional connections C is defined as

C = {(si, ti)|si, ti ∈ V, si 6= ti, 1 ≤ i ≤ κ} . (3.1)

All connections are assumed to demand unit capacity equal to one wavelength channel.

This means that a single unit of capacity (equal to the bandwidth of one wavelength channel)

is enough to carry the traffic of one and only one connection, i.e. no traffic grooming is allowed.

We further assume that the edge capacity is not a limiting constraint in provisioning con-

nections or protection circuit. This assumption reflects the fact that each fiber link has huge

amount of bandwidth.

We also define one unit of cost as one unit of capacity used on one edge. Therefore the cost of

provisioning a connection is equal to reserving one unit of capacity on a simple path connecting

end points of the connection, i.e. is equal to length of the path (since each connection demands

one unit of capacity per each edge).

3.4 Problem Statement and Algorithms

Given the network graph G and the set of connections C, the main problem is to provi-

sion and protect all connections against any single link failure using the technique of 1+N at

minimum cost. As stated before, the optimal solution involves the following two steps:

1. Optimal partitioning of the set of connections: The partitioning determines which con-

nections should be protected together, i.e., the subset of connections in each partition are
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protected using the same Steiner tree. Different partitions are provisioned and protected

independently, therefore, the total cost associated with a partitioning is equal to the sum

of individual partitions costs. Minimum cost partitioning is an instance of famous Set

Partitioning Problem (SPP) which is NP-hard [8].

2. Minimum cost provisioning and protection of each partition: This problem is comprised

of two NP-hard subproblems namely, minimum cost edge disjoint paths [30] and Steiner

Minimal Tree [84]. Since the optimal solution to the problem requires solving the two

subproblems jointly, it is at least as hard as the hardest of the two subproblems, i.e.,

NP-hard.

Due to the exponential time nature of the problem, the ILP formulation of the problem as an

optimization problem can only find the optimal solution for small networks and a few number

of connections in a reasonable amount of time [42]. The way to solve real world instances of

the problem is to revert to efficient heuristic algorithms. We start by designing a heuristic

algorithm for the partitioning step.

Since there are exponentially many ways to partition a set of given connections, a polynomial

time algorithm should not try to check all possible partitions. Two extreme cases are: I) Single

partition which includes all the connections. In this case all connections are provisioned using

edge disjoint paths and a single edge disjoint Steiner tree is used to protect all connections. II)

Each connection is a separate partition and protected separately; Steiner tree in this case is

simply a secondary path edge disjoint from connection’s primary path. This is in fact equivalent

to 1+1 protection; 1+1 protection is included as a special case of 1+N protection in the solution

space. It is worth noting that the number of connections in a partition may be limited by the

network graph connectivity since to provision and protect a larger partition would require more

“disjointness”.

Algorithm 1 shows our greedy partitioning algorithm. The COST function returns the cost

to provision and protect a partition. The algorithm starts by a new empty partition p as the

current partition. The first connection to be added to a new partition is the one whose COST is

minimum among all remaining connections (lines 3 to 6). The cost returned by COST function
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for such a single-connection partition is equal to the cost of 1+1 provision and protection (which

is found using Bhandari’s algorithm [11] and is optimal).

The algorithm then greedily chooses the next connection c to be added to the current

partition p in such a way that the cost of new partition is locally minimized (line 8). A

connection c is considered a candidate only if the cost of new partition formed by adding c

to the current partition (COST (p ∪ {c})) is less than the total cost of considering c as single-

connection partition (COST ({c})) plus the cost of current partition COST (p). If no such

candidate connection exists (line 12) the current partition p is considered as complete and is

included in the final output partitioning P (line 13). The algorithm stops when all connections

are covered. P is the partitioning of the connections.

Algorithm 1 Greedy algorithm to find a partitioning of connections. The COST function
returns the cost of provisioning and 1+N protection of a partition.

Input: G(V,E): network graph, C: set of connections

Output: P: partitioning of connections

1: P ← ∅, p← ∅
2: while C 6= ∅ do

3: if p = ∅ then

4: cmin = argminc∈C {COST ({c})}
5: p← {cmin}
6: C ← C\cmin
7: else

8: Cp = {c ∈ C|COST (p ∪ {c}) < COST (p) + COST ({c})}
9: cmin = argminc∈Cp {COST (p ∪ {c})}

10: if cmin 6= 0 then

11: p← p ∪ {cmin}
12: C ← C\cmin
13: else

14: P ← P ∪ p
15: p← ∅
16: end if

17: end if

18: end while

19: P ← P ∪ p

The underlying component of above algorithm is minimum cost provisioning and protecting

of a partition (COST function) which is an NP-hard problem (consisting of two NP-hard

subproblems). We use the following heuristic steps to solve this problem:
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1. The problem is split into two separate subproblems: Provisioning minimum cost edge

disjoint paths and finding minimum cost Steiner tree for subset of connections in the

partition.

2. Two heuristic algorithms are used to solve the subproblems: Greedy Shortest Paths

algorithm [54] and Greedy Steiner Tree algorithm by Takahashi [81].

Algorithm 2 shows the Greedy Shortest Paths algorithm [54]. The algorithm tries to find

a set of minimum cost edge disjoint paths for the subset of connections in a partition p. In

each round it finds the connection with the minimum length shortest path among all remaining

connections, routes the connection, and removes the route from the graph to guarantee edge

disjointness. The Greedy Shortest Paths algorithm does not guarantee that edge disjoint paths

will be found for all connections in the partition (even if they are actually feasible to find).

When the next shortest path does not exist (line 4) the algorithm returns an empty set of

routes. In other words it only returns successfully if edge disjoint paths could be found for all

connections in the partition.

Algorithm 2 Greedy shortest paths algorithm.

Input: G: network graph, p: a partition

Output: R: set of edge disjoint routes for p

1: R← ∅
2: while p 6= ∅ do

3: min = argminci∈p {|ri|}
{ri is the shortest path route of connection ci in G}

4: if |rmin| =∞ then

5: return ∅
6: else

7: R← R ∪ rmin

8: G← G\rmin

9: end if

10: end while

11: return R

The Greedy Steiner Tree algorithm by Takahashi [81] (Algorithm 3) starts by a terminal

node (end point node of a connection) as the current subtree (line 2) and continuously finds

the next closest terminal node to the current subtree (line 5) and connects it to the subtree

by a shortest path (line 9). In the case that the Steiner cannot be found, at some point the
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distance of the next closest terminal would become infinity (line 6) and an empty tree would

be returned.

Algorithm 3 Greedy Steiner tree algorithm.

Input: G: network graph, Vp: set of end points of connections in partition p

Output: T: Steiner tree

1: pick an arbitrary v ∈ Vp
2: T ← v

3: Vp ← Vp\v
4: while Vp 6= ∅ do

5: w = argminu∈Vp {|ru|}
{ru is the shortest path route between u and T}

6: if |rw| =∞ then

7: return ∅
8: else

9: T ← T ∪ rw
10: Vp ← Vp\w
11: end if

12: end while

13: return T

In our partitioning algorithm (Algorithm 1), for each partition the COST function runs

Greedy Shortest Paths algorithm to find a set of edge disjoint paths. Upon success, it runs

Greedy Steiner Tree algorithm on the residual graph after removing all paths. This is to

guarantee that the Steiner tree is disjoint from connections paths. Only if both steps are

successful, a finite cost value will be returned by the COST function.

While the time complexity of the COST function depends on the specific implementation of

each of the heuristic algorithms, the worst case time complexity of Algorithm 1 isO(|C|2.TCOST )

where TCOST represents time complexity of the COST function. In our implementation TCOST

is O(|V |2.|C|2) therefore the total worst case time complexity is O(|V |2.|C|4).

3.5 Simulation Results

Two real world networks 14-node NSFNET and 11-node COST239 and one artificial 14-

node complete graph network are used in the simulations. The total cost of our heuristic

algorithm for provisioning and 1+N protection of a given set of connections is compared to the

same cost when 1+1 technique is used.
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Connections are randomly generated for each network. To observe the effect of the number

of connections in each network and for each scheme, the number of randomly generated connec-

tions is varied from 1 to a number close to maximum number of connections in each network,

i.e., |C| is close to
(|V |

2

)
. For example in the case of 14-node NSFNET, |C| takes values from 1

to 90 (
(14
2

)
= 91). A set of connections of specific size is randomly generated 100 times, then

the cost of each scheme is averaged over all rounds and reported. One unit of cost is defined

as one unit of capacity on an edge.

Figures 3.2 to 3.7 present the cost and percentage of the cost reduction for NSFNET,

COST239, and complete graph network. Percentage of the cost reduction represents relative

improvement in total cost when 1+N is compared to 1+1. In all figures, the horizontal axis

represents the number of randomly generated connections.

Figures 3.2 and 3.3 show the results for the NSFNET where maximum of 90 connections are

generated. While 1+N always performs at least as well as 1+1, the maximum cost reduction

(21.5%) is achieved when the maximum number of connections is considered. In Figures 3.4

and 3.5 the performance of 1+N on the COST239 network is shown. Here again the maximum

cost reduction (34.5%) is achieved when maximum number connections (55) are generated. The

reason that 1+N performs better in COST239 compared to NSFNET has to do with the edge-

to-node ratio (edge density) of the networks: 19/14 and 26/11 for NSFNET and COST239

respectively. Intuitively a network with higher edge to node ratio would have more 1+N

potential, i.e., it is more likely to have larger feasible partitions (more connections provisioned

and protected together).

The expected trend continues when we look at the simulation results of complete graph

network (Figures 3.6 and 3.7). To show the effect of edge density on 1+N performance better,

a complete graph with the same number of nodes as NSFNET (14 nodes) is simulated. The

maximum cost reduction increases from 21.5% in NSFNET (with 19 edges) to 60.2% in the

complete graph (with 91 edges). The same edge density effect is observable by comparing the

cost reduction corresponding to a given number of connections in the Figures 3.3, 3.5, and 3.7.

Figure 3.8 summarizes and compares the percentage of the cost reduction in NSFNET,

COST239, and complete graph network. The horizontal axis represents the number of randomly
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generated connections (between 1 and 65). The diagram shows up to 55 connections for 11-

node COST239 because that is the maximum number of possible connections given 11 nodes.

Each point in the digram is the averaged value over 100 rounds of simulation.

The following observations are made from figures:

• Both costs (1+1 and 1+N) seems to be linear in terms of number of connections.

• 1+N performs better as the number of connections increases. Intuitively this increases

the potential to protect more connections together and reduce the total cost.

• 1+N performs better in networks with higher edge density. The graph densities are

19/14 in NSFNET, 26/11 in COST239 and 91/14 in complete graph; more “disjointness”

potential in the network makes larger partitions possible.
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Figure 3.2 Total cost of 1+N and 1+1 in 14-node NSFNET.

0	  

5	  

10	  

15	  

20	  

25	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	   50	   55	   60	   65	   70	   75	   80	   85	   90	  

%
	  o
f	  c
os
t	  r
ed

uc
,o

n	  

#	  of	  connec,ons	  

Figure 3.3 1+N cost reduction compared to 1+1 in 14-node NSFNET.
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Figure 3.4 Total cost of 1+N and 1+1 in 11-node COST239.
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Figure 3.5 1+N cost reduction compared to 1+1 in 11-node COST239.
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Figure 3.6 Total cost of 1+N and 1+1 in 14-node complete graph.
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Figure 3.7 1+N cost reduction compared to 1+1 in 14-node complete graph.

Complete	  
graph	  

NSFNET	  

COST239	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

0	   10	   20	   30	   40	   50	   60	  

Co
st
	  	  	  
re
du

c:
on

	  (%
)	  

#	  of	  connec:ons	  

Figure 3.8 1+N cost reduction compared to 1+1 in 3 different networks.
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Table 3.1 summarizes the simulation results regarding the cost efficiency of 1+N with re-

spect to 1+1 in the three simulated networks. The numbers are averaged over 100 rounds of

simulation. For each network maximum and average percentage of cost reduction is given.

Table 3.1 1+N cost reduction over 1+1 in 3 different networks.

Cost reduction (%) NSFNET COST239 Complete

Max 21.5 34.5 60.2

Average 18.5 29.2 50.7

The performance of our heuristic algorithm for 1+N is also compared to the optimal 1+N

results obtained from an ILP formulation of the problem (we use a revised version of the ILP

in [42] which runs faster). Since the optimal solution requires exponential time in terms of

number of connections, the comparison can only be made for few cases with limited number

of connections. Table 3.2 presents the results for two cases of 5 and 10 randomly generated

connections in NSFNET and COST239 as two practical networks. The cost value reported for

5 connections is averaged over 10 instances while in the case of 10 connections we could only

run one instance. N is the number of connections. Degree of suboptimality is the percentage

of cost increase when heuristic algorithm is compared to optimal solution.

Table 3.2 Cost of 1+N : Heuristic vs. ILP.

Network N Heuristic ILP Degree of suboptimality (%)

NSFNET 5 27 26 3.8

10 52 46 13

COST239 5 14.8 14 5.7

10 26 25 4

3.6 Asymptotic Analysis

Based on two observations made earlier on 1+N performance, we consider an asymptotic

analysis. The best scenario, which we expect to give the best 1+N cost efficiency compared to

1+1, would then be to consider a complete graph (densest graph) with maximum number of

connections possible. If we let the number of nodes go to infinity, asymptotic cost efficiency of

1+N versus 1+1 would be achieved.
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A complete graph G(V,E) with |V | = n nodes has
(n
2

)
= n(n−1)

2 edges which is equally the

maximum number of possible distinct connections. Provisioning each connection takes only

one unit of cost. Total cost of provisioning all connections, therefore, is n(n−1)
2 . We consider

this cost as the fixed minimum provisioning cost independent of the protection scheme used.

Protection of each connection using 1+1 scheme requires two units of cost because the

protection path has to be edge disjoint from the primary path. Given that primary path is

provisioned using the single edge connecting the end points of connection, shortest protection

path should traverse two edges to be edge disjoint. Hence protection cost of 1+1 is n(n − 1)

and total cost of provisioning and protection using 1+1 scheme is 3
2n(n− 1).

Now we look at the cost associated with 1+N. As mentioned above, we assume that the

cost of provisioning connections is fixed (n(n−1)2 ). Again our approach is to predict shape of

optimal 1+N solution through finding optimal partitioning of connections.

We are considering a complete graph where every edge represents a connection’s primary

path and the set of connections end points is equal to V . A Steiner minimal tree that connects

all end points in this case is a simple path of length n− 1. Using such a path all the remaining

connections (edges) can be protected using 1+N technique. In other words the cost of protecting

the first partition which consists of n(n−1)
2 − (n−1) connections is just n−1. While we may try

to figure out what is the minimum cost partitioning to protect the remaining n−1 connections,

there is a more important observation to make: even if 1+1 is used to protect the remaining

connections (as a special case of 1+N), the total 1+N protection cost would still be linear in

terms of n. In fact the total cost in this case is n− 1 + 2(n− 1) = 3n− 3.

Therefore in a complete with maximum number of connections possible, the protection cost

of 1+1 is in the order of number of edges (n2) while protection cost using 1+N is in the order

of number of nodes (n). Asymptotic total cost (provisioning and protection) ratio of 1+N to

1+1 is as follows:

lim
n→∞

n(n−1)
2 + (3n− 3)
3
2n(n− 1)

=
1

3
(3.2)

In terms of percentage of cost reduction, this means that 1+N asymptotically needs 66.6%

less resources compared to 1+1. This result is in compliance with the simulation results on the

complete graph which showed maximum 60.2% of cost reduction. It also proves the efficiency
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of our heuristic algorithm on complete graphs which is capable of achieving a performance very

close to the asymptotic bound.

3.7 Conclusion

A heuristic algorithm for minimum cost provisioning and 1+N protecting of a given set of

connections is presented. The core idea is to greedily partition the given set of connections such

that total cost is minimized. The subset of connections in each partition are independently

provisioned and protected using Greedy Shortest Paths and Greedy Steiner Tree heuristic algo-

rithms. Performance of the algorithm is evaluated both experimentally by simulating different

network scenarios and analytically by finding an asymptotic bound. The simulation results

show that cost efficiency of our heuristic 1+N algorithm with respect to 1+1 increases when

the number of connections or graph density is increased. Given the fact that the compari-

son was made between a suboptimal algorithm for 1+N scheme and an optimal algorithm for

1+1 scheme, our results show maximum cost savings of 21.5%, 34.5%, and 60.2% in 14-node

NSFNET, 11-node COST239, and 14-node complete graph networks. Moreover the suboptimal

cost found by the heuristic algorithm shows at most 5.7% and 13% increase of cost in the case of

5 and 10 connections (respectivley) compared to the optimal 1+N results from ILP formulation

of the problem. The final contribution of this paper is an asymptotic bound which shows 1+N

can achieve 66.6% cost reduction compared to 1+1 in complete graphs.



www.manaraa.com

27

CHAPTER 4. MULTICAST 1+1 PROTECTION: THE CASE FOR

SIMPLE NETWORK CODING

Extended and modified from a paper accepted for publication in the proceedings of ICNC

2015 [70].

4.1 Abstract

We discuss how the idea of unicast 1+1 protection can be efficiently extended to protect

multicast connections in optical backbone networks. Particularly, we show how to achieve

instantaneous failure recovery and cost efficiency by allowing intermediate nodes to merge

their incoming flows by a simple network code, i.e., logical OR operation. Under simple network

coding, the problem of minimum cost multicast 1+1 protection is formulated as a 2-connectivity

problem. In order to solve this problem, an optimal ILP and three efficient heuristic algorithms

are proposed. Simulation results on real-world networks show that the average cost of our best

heuristic algorithm is only 2.6% higher compared to the optimal ILP solution.

4.2 Introduction

Multicast is a one-to-many traffic model in which a source node transmits the same in-

formation to a set of destination nodes. Such traffic model is used in backbone networks for

provisioning high data rate applications such as Internet TV (IPTV) [14][91], distribution of

financial information [67], and data dissemination in cloud and grid computing [15]. Many such

applications demand highly available always-on connections. Underlying backbone networks,

on the other hand, are subject to service disruption because of link and component failures.

Moreover, even a single link failure can disrupt the connection to multiple destination nodes
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in the multicast traffic model. Therefore efficient multicast protection techniques that satisfy

availability requirements are needed.

While multicast protection has been the subject of extensive studies, most of proposed

techniques are tuned for non-instantaneous recovery, i.e., when a certain amount of delay in

recovery is acceptable. In this paper we focus on the problem of multicast protection with

instantaneous failure recovery.

Dedicated 1+1 protection has been commonly used in optical networks to provide instanta-

neous failure recovery against single failures for unicast connections. A pair of disjoint primary

and backup routes are used to deliver two copies of each data unit from source to destination

simultaneously. Failure of one route therefore causes no service disruption. If a multicast con-

nection was provisioned as a set of independent unicast connections, the same technique could

be directly applied to each connection. However, clearly that does not provide a cost efficient

solution. When a tree is used to provision a multicast connection, a natural generalization of

the idea of 1+1 protection is to have a pair of disjoint primary and backup trees connecting

source to all destinations. While the cost efficiency is improved here, the required connectivity

could be higher. If the network is 2-connected, one can always find a pair of disjoint paths

between the source and each destination node but not necessarily a pair of disjoint trees.

The idea of 1+1 protection has been used in [78] to design a cost-efficient multicast pro-

tection technique against single link failures. A minimum cost disjoint path pair, Optimal

Path Pair (OPP), is found from source to each destination. In order to reduce the cost, path

pairs to different destinations are allowed to share bandwidth on common links. Figure 4.1

shows an example of how OPP works. A multicast connection is given with source node s and

destination nodes d1 and d2 on a Butterfly network. Assuming that one unit of capacity

is reserved on each link of each path to each destination, the total reserved capacity without

sharing is 6 + 6 = 12 in unicast 1+1 protection. In the case of OPP, total reserved capacity

would be reduced to 12− 3 = 9 because of sharing on links (s, u), (s, v), and (w, x). However

the capacity improvement by OPP has a negative effect on the recovery delay.

Even though OPP finds two disjoint paths per destination node, because of the link sharing

it cannot send two disjoint flows to all destination nodes. In Figure 4.1, node w can only forward
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• Disjoint path pair protection

Based on 1+1
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Figure 4.1 Unicast 1+1 protection vs. OPP

one of the incoming flows from nodes u and v because only one unit of capacity is reserved on

link (w, x). Figure 4.2 shows this situation. Suppose node w chooses to forward flow from v

to the downstream node x, then destination node d1 will receive two disjoint flows but that is

not the case for node d2.

Failure Recovery Delay
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Figure 4.2 Required switching at intermediate node w

Given a failure on link (s, v), node d1 will still receive data through path (s−u−d1) however

node d2 will be totally disrupted. It is only after node w realizes that incoming flow from node

v has failed and switches to incoming from node u that the flow to node d2 could be restored

through path (s− u−w− x− d2) (Figure 4.2). The recovery delay in this case is due to OPP

not delivering two disjoint copies of each data unit to each destination. The same situation

could happen for multiple intermediate nodes in a general multicast network.

In this paper, we propose a solution to the multicast 1+1 protection problem that offers

both cost-efficiency of sharing and instantaneous recovery of unicast 1+1 protection. In order

to eliminate the recovery delay due to the sharing, our solution introduces the idea of merging



www.manaraa.com

30

flows at intermediate nodes which can be implemented using simple logical OR operation. The

problem of minimum cost multicast 1+1 protection is then formulated as an ILP. The optimal

results obtained by solving the ILP model are compared with two efficient heuristic algorithms

for multicast 1+1 protection.

The rest of the paper is organized as follows: Section 4.3 explains the main idea behind

multicast 1+1 protection by an example. Section 4.4 reviews the related work in the fields

of multicast protection in networks and connectivity problems in graph theory. Section 4.5

presents the assumptions and problem statement. In Section 4.6, we present optimal formu-

lation of the problem. Section 4.7 describes the heuristic algorithms. Simulation results for

optimal and heuristic algorithms are presented in Section 4.8. Finally Section 4.9 concludes

the paper.

4.3 The Idea

As discussed earlier, the recovery delay in OPP is due to the fact that the failure will have

to be detected, intermediate nodes (such as w in Figure 4.2) are signaled, and switches will

have to be reconfigured. All of this can take tens of milliseconds. This delay can be avoided if

the intermediate node merges the incoming flows into one outgoing flow by a simple logical OR

operation. As Figure 4.3 shows, under normal operation node w would OR equal data units

from u and v (α + α = α). This results in a single data unit which is forwarded to node x.

In case of a single failure on an upstream link, e.g., (s, u) or (s, v), node w receives an empty

packet (equally a zero data unit) on one link and α on the other. The OR operation would

still produce α. Therefore the outgoing flow on (w, x) will not be affected by any upstream

single link failure. Both destinations, as a result, will at least receive one copy of α under any

single link failure. This example shows how merging flows at intermediate node w, makes it

possible to have the benefits of sharing (cost efficiency) and dedicated protection (instantaneous

recovery) at the same time. In general, merging happens whenever an intermediate node has

multiple incoming flows (belonging to the same multicast connection) that share an outgoing

link.
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Network Coding: Multicast 1+1
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Figure 4.3 Multicast 1+1 protection using merging flows

4.4 Related Work

Due of the nature of our problem, we consider related work in two domains of research: 1-

network protection and survivability and 2- connectivity problems in graphs. While the former

focuses on more practical aspects of network and traffic, and offers offline optimal solutions

and fast online heuristic algorithms, the latter takes a more theoretic approach and focuses on

complexity analysis and approximation bounds.

4.4.1 Multicast protection with instantaneous recovery

In [78] and [93] two different classifications of general multicast protection techniques are

given. Here we focus on multicast protection techniques that offer instantaneous failure re-

covery. Due to the recovery requirement, such techniques are mainly categorized as dedicated

protection techniques. Therefore in the case of multiple sessions, there is no inter-session backup

sharing and each session is protected independently.

In [78] and [93] two different classifications of multicast protection techniques are given.

Here we give a classification based on whether an approach includes a primary tree or not.

With Primary Tree Normally a Steiner Minimal Tree heuristic such as Prim-based

heuristic [74] or MPH (Minimum Path Heuristic) [81] is used to find the primary tree. Protec-

tion of the primary tree can take different forms:

• Tree-based: The idea is to protect the primary tree with an edge, link or node disjoint

secondary tree. A dual-tree approach was proposed in [26]. A primary tree is protected
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by secondary (node or link) disjoint tree that connects all the leaf nodes. More recently

in [20] authors propose a novel Steiner tree heuristic called Steiner Node Heuristic (SNH).

SNH incrementally adds non-destination nodes to the set of destinations and finds a new

Steiner tree using MPH. The algorithm proceeds to the next step only if adding a new

terminal reduces the cost. Therefore, by construction SNH is proved to be at least as

good as MPH. SNH is then used to find a pair of disjoint trees. Given n nodes and k

terminals, the time complexity is O(k2n3) for SNH compared to O(kn2) for MPH. The

new algorithm is directly used to find to disjoint (arc or node) trees for the purpose of

multicast protection. Performance of SNH, MPH and Pruned Prim’s Heuristic (PPH)-

based tree protection techniques are then compared. Although the authors give a clear

example of when SNH performs better than MPH, their simulation does not show a

noticeable difference between the two. The reason could do with the simulation network;

only one network (similar to USNet) is used. The blocking probability, instead, shows

some improvement when the number of used links is chosen as the measure of cost. In [21]

authors present a slightly modified MPH algorithm to provide better blocking probability

in arc-disjoint tree protection. In [63] authors devise tree-based protection to protect each

segment on the primary tree.

• Cycle-based: Most of the work in this category involve use of p-cycles to protect the

primary tree. P-cycles are particularly efficient in protecting dynamic multicast sessions

[27][92].

• Path or Segment-based: Disjoint paths or segments can be used to protect paths, segments

or simply individual links on the primary tree [61] [72]. In [66] the technique of Robust

Network Coding is applied to optical multicast protection. In order to protect against

k link failures, a k-link-connected Steiner subraph is found. The algorithm starts by a

1-link-connected Steiner subgraph and augments it by adding source-destination paths.

Without Primary Tree Instead of breaking the problem into provision of a multicast

tree and protection of multicast tree, a subgraph which satisfies the required connectivity

between source and terminals is proposed.
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• Path-based: [78] presents OPP (described before). In [13] path-based protection is used

to protect against source failure as well as link failures.

• Ring-based: The idea of collapsed-ring (a ring used in both directions) for multicast

protection is presented in [75]. The authors actually describe their method as 1+1 pro-

tection for multicast. In [85] a Hamiltonian cycle is used to protect multiple multicast

trees (different sessions) at the same time.

Network coding In the context of network coding, Robust Network Coding [53] provides

instantaneous failure recovery for multicast. Static linear codes are designed such that a feasible

multicast rate can be protected against any failure pattern for which the rate remains feasible.

Moreover it allows for simple formulation of optimal cost problem, i.e., minimum cost subgraph

supporting the rate under given failure pattern.

In [45] a review of optical multicast protection using network coding is presented. Im-

plementing robust network coding in optical backbone networks is challenging. The main

problem is implementation of linear network coding functions at the optical layer. In [52]

optical-electrical-optical (OEO) conversion is assumed at network nodes in order to implement

linear network coding functions. Robust network coding is then used to protect against single

link failures. A minimum link cost ILP formulation of network coding subgraph is presented

[51]. The authors further add the cost associated with OEO converter ports to the optimization

problem. The resulting multi-objective problem is solved by an evolutionary approach. The

simulations show that in most cases the network coding solution can actually be converted to

a routing solution.

An all-optical implementation of robust network coding is presented in [66]. Instead of

OEO converters which require terminating of optical signal, all-optical implementation of linear

network coding is discussed including optical switching, buffering, and logical operations. The

problem of unit rate multicast protection against k link failures is then addressed using robust

network coding. A heuristic algorithm, Robust Coded Multicast (RCM), is proposed to find

a subgraph with k + 1-connectivity for every source-destination pair. The algorithm starts

by a Steiner tree as a 1-connected subgraph and in each round augments the connectivity
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by one. Authors also present an ILP formulation for minimum cost 2-connected subgraph

which provides single failure protection under robust network coding. For a review of multicast

protection using network coding.

We make the observation that for a unit rate multicast connection to be protected, the

network nodes only need to support one simple network code, i.e., OR operation. This can also

be viewed as merging flows at intermediate nodes using logical OR. Therefore our approach

simplifies the network coding operation and its implementation at optical layer, while still

offering instantaneous failure protection at minimum cost.

4.4.2 Related connectivity problems

Survivable network design problem (SNDP) is defined as a connectivity problem [56]. The

input graph G(V,E) is an undirected graph with edge weights. There is an integral connectivity

requirement ruv for every pair of vertices u and v. The problem has two versions of edge

connectivity (EC-SNDP) and vertex connectivity (VC-SNDP). If set X represents, the set of

all connectivity requirements then edge connectivity problem can be shown as X-EC-SNDP.

For example spanning tree problem can be referred to as 1-EC-SNDP. The 2-EC-SNDP would

represent a 2-edge connected spanning subgraph. In [36] a 2-approximation algorithm for

general EC-SNDP is given and in [39] a 5/4-approximation for 2-EC-SNDP is proposed.

In the rooted SNDP problem, the connectivity is only required between a root s ∈ V and

a set T ⊂ V of terminals. In [19] an approximation ratio of O(klog|n|) is found for Rooted

VC-SNDP where all terminals have same demand of k disjoint paths to source.

Some researchers use Steiner terminology to define the problem. [77] considers 2-vertex

connected Steiner Minimal Network (SMN) problem on undirected graphs. Authors propose a

factor 2 approximation algorithm with running time of O(|V |2|S|3). The same algorithm runs

in O(|V |2|S|2) for the edge connectivity case.

The directed versions (directed graph and directed connectivity) of the same problems

have received less attention from research community ([49]). In [29] authors discuss rooted

k-connectivity spanning subgraph in directed graphs: a minimum cost spanning subgraph G′ =

(V,E′) of a directed graph G = (V,E) so that G′ contains k (edge or vertex) disjoint paths from
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a specified root r ∈ V to every other node in V (also called (k, r)-arborescence). Authors show

that this version of the problem is polynomially solvable. The work in [25] addresses rooted

connectivity problems for a subset of terminal nodes. Authors call it directed Steiner problem

with connectivity constraints (DSCC) in which each terminal may have different connectivity

requirement from the root.

The recent work of [17] addresses directed rooted connectivity (directed version of Rooted

SNDP) and directed rooted k-connectivity. Authors mention that directed edge-disjoint and

vertex-disjoint problems are essentially equivalent. The main contributions are:

• Directed rooted connectivity problem in acyclic directed graphs with total connectivity

of O(1) is polynomially solvable via dynamic programming.

• Directed rooted (general) connectivity problem with 2 terminals is APX-hard, even in

acyclic digraphs with uniform costs.

For relations between undirected SNDP and directed SNDP, reader may refer to [57]. Reference

paper [55] provides a survey of approximation algorithms for connectivity problems.

4.5 Assumptions and Problem Statement

The backbone network is modeled as directed graph G(V,E) where V is the set of nodes

and E is the set of directed edges. A physical bidirectional link between a pair of nodes u and

v is modeled as two edges: (u, v) and (v, u). One wavelength channel is defined as the unit

capacity. We assume that each link carries W wavelength channels in each direction. Failure of

a link causes all those channels to fail. This is modeled by removal of both directed edges. The

cost of reserving one unit of capacity on edge (u, v) is defined as cuv which could be different

for each edges depending on physical link properties such as physical length. A multicast

request is represented as M(s,D = {d1, ..., dk}) where s ∈ V is the source node and there are k

distinct destination nodes such that ∀i, di ∈ V and s /∈ D. We assume unit multicast rate, i.e.,

multicast demand can be delivered over a single wavelength-channel in an optical network. This

assumption is justified by the high bandwidth offered by a single optical channel. Moreover we

assume static traffic model and no traffic grooming. We further assume that network nodes



www.manaraa.com

36

are capable of merging incoming flows by simple logical OR operation. Finally, the single link

failure multicast 1+1 protection problem is defined as follows:

Problem. Given G(V,E) where nodes are capable of merging incoming flows and a unit rate

multicast connection M(s,D = {d1, ..., dk}), find the minimum cost (link cost) subgraph H ⊆ G

that provides instantaneous single link failure recovery.

In the following we describe necessary and sufficient conditions for subgraph H.

Lemma 1. Subgraph H ⊆ G provides instantaneous single link failure recovery iff it includes

2 link-disjoint paths from s to each di.

Proof. (Sufficient condition) Assume H includes 2 link-disjoint paths from s to every di which

are denoted by p1s,di and p2s,di . A single link failure could at most hit one of the two paths for

each destination. For a specific destination di, suppose p1s,di is failed and p2s,di is not. The data

unit traveling on p2s,di would possibly be merged with other flows at intermediate nodes. Since

any such merging operation would be a logical OR operation whose other operands are either

zero or the same data unit (from other intact flows), the data unit traveling on p2s,di will not

be affected by the failure and will be delivered to di. In the same way any destination node

will receive at least one copy of each data unit in the event of any single link failure.

(Necessary condition) Assume subgraphH provides unit rate multicast connectionM(s,D =

{d1, ..., dk}) with instantaneous recovery for any single link failure. If H does not include (at

least) two link disjoint paths from s to (at least) one destination di, then min-cut between s

and di is at most 1. This means there is a single link whose failure disconnects s from di which

contradicts the assumption of single failure protection.

It is also worth noting that the necessary condition applies to any approach that provides

single link failure protection even if it does not support instantaneous recovery. Finding mini-

mum cost subgraph H that provides bi-connectivity between source and each destination node

is known to be NP-hard [66].
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4.6 Optimal Formulation

Based on the necessary and sufficient conditions presented in Section 4.5, the problem of

minimum cost multicast 1+1 protection is equivalent to finding a minimum cost subgraph

that provides bi-connectivity between the source and each destination. Such subgraph can be

optimally found using the following ILP formulation.

Binary variable xuv is equal to one if edge (u, v) is used in the solution. Binary variable

fdiuv represents the flow from s to di on edge (u, v). Equation 4.1 presents the total cost of the

solution to be minimized. Equation 4.2 is flow conservation at the source, destination nodes,

and other intermediate nodes. Equation 4.2 makes sure that xuv = 1 if edge (u, v) is used by

any flow. Equation 4.3 defines the binary variables. The ILP basically sends 2 units of flow

from s to each destination di. Since flow variables are defined as binary, 2 units of flow would

be carried by 2 edge-disjoint paths.

Min
∑

(u,v)∈E
cuv · xuv (4.1)

∑
(u,v)∈E

fdiuv −
∑

(w,u)∈E
fdiwu =


+2 u = s

−2 u = di

0 o.w.

∀u ∈ V , ∀di ∈ D .

xuv ≥ fdiuv ∀(u, v) ∈ E , ∀di ∈ D . (4.2)

fdiuv , xuv ∈ {0, 1} ∀(u, v) ∈ E , ∀di ∈ D . (4.3)

4.6.1 Single link failure protection

The minimum cost objective ensures that the edge-disjoint path pair from s to a single

destination di will not include any directed cycles since any such cycle could be removed to

find a lower cost solution [94]. This includes the case for any two oppositely directed edges

(u, v) and (v, u). In other words the edge-disjoint path pair from s to any destination di will

not include oppositely directed edges. Therefore they are link-disjoint (note that a link was
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modeled by two oppositely directed edges). Hence the solution provides full single link failure

protection.

4.6.2 Single node failure protection

Multicast 1+1 protection can also provide single node failure protection. Here we use the

node splitting method proposed by [80] to build a modified graph G′(E′, V ′). Every node

u ∈ V is substituted by two nodes u1, u2 ∈ V ′ and one directed edge (u1, u2) ∈ E′ of cost zero.

For every directed edge (v, w) ∈ E, a directed edge (v2, w1) is added to E′ with same cost.

Multicast connection is also modified to M ′(s2, D′ = {d11, ..., d1k}).

Finding two edge-disjoint paths in the modified graph G′(E′, V ′) corresponds to finding

two node-disjoint paths in the original graph G(V,E). Solving the same ILP for G′ and M ′

generates two edge-disjoint paths from s2 to each d1i . This is equal to two node-disjoint paths

for G and M . Moreover since the added (u1, u2) edges are zero cost, the cost of the edge-disjoint

solution in G′ is the same as its corresponding node-disjoint solution in G.

4.7 Heuristic Algorithms

The problem of minimum cost 1+1 protection for multicast is NP-hard. Obtaining the

minimum cost by solving ILP formulation may not be practical for the real scenarios of dy-

namically changing multi-session multicast traffic. Therefore it is necessary to propose heuristic

algorithms capable of providing fast yet efficient online solutions.

The core problem is 2-connectivity from source to all destinations. The 1-connectivity

problem is the famous Steiner tree problem for which there is a well-known heuristic, i.e.,

Minimum Path Heuristic (MPH ) [81]. The idea is to find the closest destination to the source,

connect it by shortest path, set the cost of edges on the path to zero, then find next closest

destination, and continue until all destinations are covered. The very same idea can be extended

to build a 2-connected subgraph: substituting the notion of shortest path with shortest disjoint

path-pair which can be found by Suurballe’s algorithm [80] (Algrithm 4). We call this Minimum

Path-Pair Heuristic (MPPH).
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While MPPH maintains 2-connectivity at each step, another method is to start from a

1-connected subgraph (Steiner tree) and augment it to a 2-connected one. In [66] authors

have proposed an algorithm based on a similar idea. First a Steiner tree is found, then the

connectivity to destinations is augmented one at a time. This is done by removing the edges of

the path from source to each destination on the Steiner tree and then finding a second shortest

path to that destination. We propose an algorithm that augments a Steiner tree found by MPH

to a 2-connected subgraph using MPPH. Hence called MPH+MPPH (Algorithm 5). The cost

of Steiner edges returned by MPH are set to zero so that MPPH has incentive to use Steiner

tree edges. In the simulation resutls we also use a more involved version of this algorithm

called MPH+MPPH(all) which basically runs |D| instances of MPPH. In each instance one

destination node is fixed as the first destination in MPPH algorithm.

Algorithm 4 Minimum Path-Pair Heuristic: MPPH

Input: G(V,E), M(s,D)

Output: Subgraph H

1: H ← s

2: while D 6= ∅ do

3: j ← argmindi∈D(|pdi |)
{pdi is the shortest path-pair from s to di in G}

4: ∀(u, v) ∈ pdj : cuv ← 0

{updates the cost of edges of path-pair pdi in G}
5: H ← H ∪ pdj
6: D ← D\dj
7: end while

8: return H

Algorithm 5 MPH+MPPH

Input: G(V,E), M(s,D)

Output: Subgraph H

1: T ←MPH (G(V,E),M(s,D))

2: ∀(u, v) ∈ T : cuv ← 0

{updates the cost of edges of T in G}
3: H ←MPPH (G(V,E),M(s,D))

4: return H

Time complexity of MPH [81] is |D|.O(S) where |D| is number of destinations and O(S) is

the time complexity of shortest path algorithm. Time complexity of MPPH depends on finding
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a shortest path-pair (step 3) which has the same time complexity as shortest path algorithm.

In each iteration of MPPH we need to find the destination with minimum shortest path-pair

among the remaining destinations. Therefore the time complexity of MPPH is |D|2.O(S).

Time compexlity of MPH+MPPH hence is the same as MPPH. Finally MPH+MPPH(all)

would have time complexity of |D|3.O(S). In our implementation O(S) = O(|V |2) however

a more efficient implementation can achieve O(|E| + |V |log|V |) for Dijkstra’s shortest path

algorithm.

4.8 Simulation Results

The original Pan-European network COST239 (11 nodes, 26 links) [9] and a modified version

are used in the simulations. In the modified version, evey link (u, v) in original network is

replaced by a new node wuv and two new links (u,wuv) and (wuv, v). Therefore it has 11+26=37

nodes and 2*26=52 links. We refer to it as COST239+. For COST239 two cost functions are

used: 1- unit link cost where links have equal unit cost, 2- physical distance cost where distance

between cities is used as the link cost (in km). In the case of COST239+, we only consider

physical distance and the new nodes are assumed to be halfway between original nodes.

In each case the costs reported by ILP and heuristics (OPP, MPPH, MPH+MPPH, and

MPH+MPPH(all)) are compared. Our results cover the complete range of session size which is

2 to 11 for COST239 and 2 to 37 for COST239+. In each case 100 random multicast sessions

are generated and the average cost for each session size is calculated. The same random sessions

are applied as input to ILP and heuristic algorithms.

Figure 4.4 shows the results for COST239 with unit distance cost. While all heuristics

perform well compared to ILP, MPH+MPPH and MPH+MPPH(all) are almost the same as

optimal. Figure 4.5 shows the results for COST239 with physical distance as the link cost. Here

again MPH+MPPH and MPH+MPPH(all) peform better than OPP and MPPH. In Figure

4.6 the results on COST239+ network are presented. Again we observe that MPH+MPPH and

MPH+MPPH(all) perform very close to optimal. For the sake of readability, in each figure we

have only shown a subset of session sizes for which the optimal vs. heuristic difference is more
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visible. In Table 4.1 we summarize the average and worst case performance (over all session

sizes) of our best heuristics and OPP compared to optimal.

Session size OPP MPPH MPH+MPPH MPH+MPPH(all) ILP

2 3.71 3.71 3.71 3.71 3.71 0.00 0.00 0.00 0.00

3 6.09 6.13 5.89 5.82 5.79 5.18 5.87 1.73 0.52

4 8.18 8.18 7.95 7.8 7.75 5.55 5.55 2.58 0.65

5 10.08 9.91 9.5 9.31 9.28 8.62 6.79 2.37 0.32

6 11.74 11.49 10.97 10.88 10.86 8.10 5.80 1.01 0.18

7 13.28 12.89 12.38 12.36 12.35 7.53 4.37 0.24 0.08

8 15.01 14.54 14.06 14.06 14.06 6.76 3.41 0.00 0.00

9 16.62 16.26 16 16 16 3.88 1.63 0.00 0.00

10 18.27 18.11 18 18 18 1.50 0.61 0.00 0.00

11 20 20 20 20 20 0.00 0.00 0.00 0.00

122.98 121.22 118.46 117.94 117.8 4.40 2.90 0.56 0.12

8.62 6.79 2.58 0.65

Session size OPP MPPH MPH+MPPH MPH+MPPH(all) ILP

2 1841.75 1841.75 1841.75 1841.75 1841.75 0.00 0.00 0.00 0.00

3 2960.6 2953.75 2927 2892.05 2876.1 2.94 2.70 1.77 0.55

4 4035.35 4042.5 3976.65 3922.75 3886.45 3.83 4.02 2.32 0.93

5 4812.1 4835.65 4674.05 4601.05 4525.85 6.32 6.85 3.27 1.66

6 5675.2 5644.6 5454.95 5335.8 5261.4 7.86 7.28 3.68 1.41

7 6349.2 6383.75 6115.3 5954 5838.75 8.74 9.33 4.74 1.97

8 7045.3 7191.4 6812.6 6652.05 6460.7 9.05 11.31 5.45 2.96

9 7658.4 7830.5 7401.4 7177.5 6973.9 9.82 12.28 6.13 2.92

10 8299.45 8496.15 7974.85 7735.85 7457.55 11.29 13.93 6.94 3.73

11 8827.5 9098.8 8547.1 8333.4 7961.9 10.87 14.28 7.35 4.67

57504.85 58318.85 55725.65 54446.2 53084.35 8.33 9.86 4.98 2.57

11.29 14.28 7.35 4.67
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Figure 4.4 COST239 network: unit link cost

Table 4.1 Average/worst case percentage of extra cost (vs. optimal)

Network OPP MPH+MPPH MPH+MPPH(all)

COST239(unit) 4.4/8.6 0.6/2.6 0.1/0.7

COST239(phys) 8.3/11.3 5.0/7.4 2.6/4.7

COST239+(phys) 5.5/7.7 2.6/4.4 1.6/2.4

4.9 Conclusion

The idea of 1+1 protection is extended to multicast protection using simple network coding.

The 1+1 protection sends, simultaneously, two copies of each data unit to every destination,

and simple network coding (OR operation) guarantees that upon any single link failure, at least

one data copy is received by all destinations. No rerouting or switch reconfiguration is required

and destination nodes would not experience any service disruption under any single link/node

failure. The necessary and sufficient condition for the existence of 1+1 protection solution
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Session size OPP MPPH MPH+MPPH MPH+MPPH(all) ILP

2 3.71 3.71 3.71 3.71 3.71 0.00 0.00 0.00 0.00

3 6.09 6.13 5.89 5.82 5.79 5.18 5.87 1.73 0.52

4 8.18 8.18 7.95 7.8 7.75 5.55 5.55 2.58 0.65

5 10.08 9.91 9.5 9.31 9.28 8.62 6.79 2.37 0.32

6 11.74 11.49 10.97 10.88 10.86 8.10 5.80 1.01 0.18

7 13.28 12.89 12.38 12.36 12.35 7.53 4.37 0.24 0.08

8 15.01 14.54 14.06 14.06 14.06 6.76 3.41 0.00 0.00

9 16.62 16.26 16 16 16 3.88 1.63 0.00 0.00

10 18.27 18.11 18 18 18 1.50 0.61 0.00 0.00

11 20 20 20 20 20 0.00 0.00 0.00 0.00

122.98 121.22 118.46 117.94 117.8 4.40 2.90 0.56 0.12

8.62 6.79 2.58 0.65

Session size OPP MPPH MPH+MPPH MPH+MPPH(all) ILP

2 1841.75 1841.75 1841.75 1841.75 1841.75 0.00 0.00 0.00 0.00

3 2960.6 2953.75 2927 2892.05 2876.1 2.94 2.70 1.77 0.55

4 4035.35 4042.5 3976.65 3922.75 3886.45 3.83 4.02 2.32 0.93

5 4812.1 4835.65 4674.05 4601.05 4525.85 6.32 6.85 3.27 1.66

6 5675.2 5644.6 5454.95 5335.8 5261.4 7.86 7.28 3.68 1.41

7 6349.2 6383.75 6115.3 5954 5838.75 8.74 9.33 4.74 1.97

8 7045.3 7191.4 6812.6 6652.05 6460.7 9.05 11.31 5.45 2.96

9 7658.4 7830.5 7401.4 7177.5 6973.9 9.82 12.28 6.13 2.92

10 8299.45 8496.15 7974.85 7735.85 7457.55 11.29 13.93 6.94 3.73

11 8827.5 9098.8 8547.1 8333.4 7961.9 10.87 14.28 7.35 4.67

57504.85 58318.85 55725.65 54446.2 53084.35 8.33 9.86 4.98 2.57

11.29 14.28 7.35 4.67
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Figure 4.5 COST239 network: physical distance as link cost

under merging flows is simply 2-connectivity from source to each destination. This allows us to

easily formulate the problem as a network flow problem which can be solved to find minimum

cost subgraph supporting 1+1 protection. An optimal ILP formulation of the problem and

three heuristic algorithms are proposed as offline and online solutions. The simulation results

on two sample networks show impressive performance by our top two heuristics as compared

to the optimal: on average, our best heuristic increases the cost by no more than 2.6% and

in the worst case, the gap between our best heuristic and optimal is only 4.7%. Future work

would include implementation of OR operation, other failure models and traffic models, e.g.,

dynamic multi-session multicast.
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CHAPTER 5. RATE, ENERGY, AND DELAY TRADEOFFS IN

WIRELESS MULTICAST: NETWORK CODING VS. ROUTING

Modified from a paper submitted for 2nd review to IEEE Transactions on Mobile Computing

[68].

5.1 Abstract

We build on the framework of joint scheduling and network coding optimization and extend

it to include rate, energy, and delay in network coding and routing paradigms. We then

study energy-rate and delay-rate relationships to see how minimum energy and delay change

as functions of multicast rate demand. The main observation is that as the rate demand

approaches maximum achievable rate, the solution tends to increasingly use more diverse,

longer paths. This translates into non-linearly higher energy and delay for higher input rates.

In the case of energy, we are also able to show that network coding provides more benefits

(when compared to routing) at higher rates. Another observation is related to the scheduling

over maximal independent sets (MISs). We present results on comparing the performance of

scheduling over all, exponentially growing, MISs and small randomly selected subsets of MISs.

Our results point to the effectiveness of latter in achieving near-optimal rate and energy while

reducing the complexity of the problem.

5.2 Introduction

Based on the theory of network coding, the maximum achievable multicast rate is equal

to the minimum of all source-terminal max-flows [6]. In a typical wired network, we can

simply find the max-flow between source and each terminal. The minimum max-flow value
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would then give us the maximum achievable rate. Network coding provides a way of breaking

the main problem (maximum rate in multicast) into independent subproblems (max-flow for

each individual source-terminal unicast) that in fact achieves the optimal solution. In a routing

paradigm, however, the solution could take the form of multiple multicast trees each delivering a

portion of rate. That is where the problem becomes harder to solve. Unlike the network coding

case, it is not easy to optimally break the problem into independent polynomially solvable

subproblems. Offering a polynomial time solution to the problem of maximum multicast rate

is, in fact, one of the main benefits of network coding. Furthermore, there is the question of

whether or not routing can achieve the maximum rate offered by network coding in a given

network. The butterfly network ([6]) is, for instance, a case where routing cannot achieve the

same rate.

In a wireless network, interference and wireless constraints such as single transceivers bring

a new level of complexity to this problem in both network coding and routing paradigms. Given

a placement of wireless nodes, the primary question is which wireless links can be active at

the same time while respecting interference and other wireless constrains. This is in contrast

to a typical wired network in which all links can be active at the same time. With wireless

constraints, even the basic problem of max-flow between two given nodes is not easy to solve

anymore.

One way around this problem is timesharing. We may assign different timeshares to links

that are not allowed to be active at the same time. In general, instead of assigning timeshares

to individual links, non-conflicting links are grouped into what is called independent sets. All

links in each independent set are “independent”, i.e., mutually non-conflicting. Timesharing is

then applied to these independent sets. Given a valid assignment of timeshares, we have what is

called a realizable network. In a realizable network, each link has its scheduled capacity which

represents the percentage of time it is active. Therefore a realizable network can be seen as a

wired network abstraction of a wireless network. Timesharing eliminates the interference and

wireless constraints by basically not allowing conflicting links to be active at the same time.

As a result, given a scheduling of wireless links, the complexity of maximum multicast

rate problem is the same as wired case. However, in order to find the true maximum, one
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has to consider solving the two components jointly; scheduling component and network coding

(or routing) component need to be jointly solved. As it turns out, solving the joint problem

is NP-hard [38]; no matter which paradigm, routing or network coding, is chosen. In fact

scheduling becomes an integral hard component of any performance optimization that depends

on it. This is, of course, in addition to the inherent complexities due to the routing paradigm

or the performance parameter (e.g., delay) optimization.

We know from previous work that network coding offers benefits in terms of rate, energy,

and delay. Network coding is shown to achieve higher rates, and for a given a rate provide

a lower energy/delay solution. Our study continues the same line of research by focusing on

optimal or near-optimal scheduling of wireless links and is motivated by following questions:

1. How can rate-energy and rate-delay relations be described under optimal scheduling?

For example, how does minimum required energy change as the multicast rate demand

is increased?

2. What performance benefits does network coding provide in wireless multicast under opti-

mal scheduling? For example, given a feasible multicast rate, is it always possible to find

a lower energy solution with network coding? Does the energy benefit of network coding

depend on the input multicast rate?

3. Are there simple yet effective ways to reduce the complexity of scheduling component?

In particular our work follows the work of Jain et al. [38] in that we too consider optimal

scheduling of interference-free wireless links using conflict graph modeling. However unlike

[38], we consider network coding in addition to routing. In the network coding aspect, our

work follows the recent work of Traskov et al. [82] on joint scheduling and network coding for

multicast. We too focus on multicast mode of communication to benefit from the availability

of well-established theory of network coding for multicast in our analysis. We also use the same

hypergraph modeling technique. Hypergraph modeling enables us to model point-to-multipoint

links as hyperarcs that capture broadcast nature of wireless transmission. Broadcast links are

specially beneficial in multicast transmission. In contrast, we extend the performance measures
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to include rate, energy, and delay, investigate their relations, and provide a inter-paradigm

routing versus network coding comparison.

We will start by a review of the literature in Section 5.3. Our focus is on previous work

addressing performance optimization problems that involve scheduling. Both routing and net-

work coding, and different modes of communication are considered. In Section 5.4 network

and interference models are presented. Section 5.5 discusses scheduling using conflict graph.

In sections 5.6 and 5.7, multicast rate region, energy, and delay formulation in network coding

and routing paradigms are presented. In section 5.8, we present some illustrative examples

to show how joint scheduling and network coding/routing works and make few observations

based on the shape of optimal solutions. We present the experimental evaluation and analytical

discussion in Section 5.9. Section 5.10 concludes the paper.

5.3 Related Work

5.3.1 Routing

The work of Jain et al. [38] is a fundamental work in joint scheduling and routing. The

technique of modeling interference using conflict graph introduced here has since been used by

other authors. Given a placement of wireless nodes and a unicast traffic matrix (source and

sink pairs), the objective is to find optimal scheduling and routing that maximizes cumulative

rate for all source-sink pairs. Two models of interference are considered:

• Protocol model: all interfering transmissions are lost.

• Physical model: interference is tolerated as long as it respects signal-to-noise ratio (SNR)

at the receiver node.

A weighted conflict graph is used in physical interference model. It is proved that a set of

transmissions is schedulable if and only if it falls into independent set (stable set) polytope of

the conflict graph. The maximum total rate is formulated as the intersection of two polytopes:

a linear multi-commodity flow formulation and the independent set polytope. This problem in

its most general form is shown to be NP-hard and hard to approximate due to independent
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set sub-problem. Alternatively subsets of independent sets and clique constraints are used

to find lower/upper bounds on the objective. The trade-off between connectivity and rate

is investigated. It is shown that in a non-greedy traffic model, more nodes participating in

wireless mesh network can, in fact, result in better rate. The paper also includes a comparison

of heuristic scheduling and heuristic routing algorithms with optimal joint scheduling and

routing.

In [62] a minimum cost Integer Linear Program (ILP) formulation is given for a single

multicast tree in multi-radio and multi-channel wireless networks. The interference is only

discussed between multiple multicast sessions. In [87] the problem of finding a single minimum

energy broadcast or multicast tree is addressed.

5.3.2 Network coding

In [88], simulation results are reported on maximum achievable multicast rate by a greedy

tree packing routing algorithm and a heuristic network coding algorithm (distributed practical

network coding [18]) in a wired setting. Both heuristics are reported to have close to optimal

performance. However network coding provides other advantages in terms of lower resource us-

age and robustness. Furthermore, it is pointed out that for a linear cost function, minimum cost

network coding problem has a linear formulation while minimum cost multicast tree problem

is NP-hard. In [86], network coding is used to reduce the number of required transmissions,

thereby saving energy. The traffic model is many to many where each node in the network

wants to transmit to all other nodes. The main contribution is the design of two optimal net-

work coding algorithms for special case circular and grid networks. The algorithms are optimal

in the sense that they minimize the number of required transmissions assuming XOR network

coding capability at all nodes. Application of network coding (even though limited to XOR

operation) is shown to outperform routing-based flooding algorithms in general networks via

simulation.

In [90], minimum energy wireless multicast under joint scheduling and network coding

is considered. The notion of elementary capacity graph (ECG) is used to model a set of

concurrently active wireless links. A broadcast link u→ Yu (u is the transmitter and Yu is the
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set of receivers) is modeled by adding a virtual node u′ and edges (u, u′) and (u′, v) for every v

in Yu. A feasible ECG is the one in which no receiver Signal to Interference plus Noise Ratio

(SINR) is violated. Timesharing at MAC layer is represented by the convex combination of

ECGs and network layer is represented by end-to-end flows. Instead of considering the set of

all ECGs (exponentially many), K feasible ECGs are heuristically and randomly found. An

iterative algorithm is proposed that starts from a basis set of ECGs, optimizes the energy, and

updates the set of ECGs. While the solution is still suboptimal, it is shown to outperform equal

timeshares and a fixed random ECG scheduling. Bit-per-Joule measure is used to present the

energy-rate tradeoff. The results show a non-linear energy-rate relation.

The work in [89] addresses the problem of minimum-energy wireless multicast using network

coding. Random linear network coding (RLNC) is assumed at network nodes. Wireless network

model is multi-hop and static with multiple power levels available at each node. A sub-optimal

notion of elementary graphs is used instead of independent sets on a conflict graph. Each

elementary graph involves a single transmitter. Therefore, instead of independent set polytope,

polytope of single links is considered, as if each independent set was reduced to a single link.

However unlike [38], the single link could be a broadcast link. Multicast mode of transmission

can, therefore, benefit from broadcast links. Similar to [90], every broadcast link is converted to

a set of point-to-point links by adding a virtual node. The difference from the flow formulation

in [38] is the assumption of multicast network coding; flows to different terminal nodes are

coded together on each common link and, therefore, share the same capacity. Minimum energy

problem for a given multicast rate is then solved under network coding and routing assumptions.

In [65], the minimum cost coded multicast is discussed. However scheduling is not addressed

here. The work discusses wire-line and wireless, static and dynamic multicast. Comparison with

routing is made only in the case of single multicast routing tree for which heuristic algorithms

are used. In the case of wireless multicast, cost is defined as energy consumption. Minimum

energy network coded multicast is compared to a heuristic routing algorithm called Multicast

Incremental Power (MIP).

In [24], energy minimization for unicast connections based on XOR coding (similar to

COPE [48]) is addressed. An offline optimization is presented and the scheduling problem
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is addressed. The main idea is that every pair of unicast connections is decomposed into

two unicast connections with no intersession coding and one multicast (2-source) butterfly-like

connection that models the intersession coding.

In Traskov et al. [82], optimal wireless multicast using network coding is addressed. Gen-

eral formulation for optimization of different objectives (such as rate, cost, or energy) in the

presence of wireless interference is provided. In comparison with [38], every possible broadcast

transmission from any node to any subset of neighbors is modeled by a separate hyperarc. The

resulting hypergraph, therefore, contains a hyperarc for every possible transmission. Another

difference is that flow conservation relies on network coding assumptions (similar to [89]). How-

ever, the basic formulation is similar to [38]: the intersection of independent set polytope and

flow conservation polytope. The paper uses Lagrangian relaxation to decompose the problem

into scheduling and network coding sub-problems. A online solution is then proposed to solve

the problem in distributed fashion.

Niati et al. [71] also address the same problem for rate and energy optimization. In compar-

ison with [83], a subset of independent sets are used for simplicity. Inside each independent set,

broadcast links are converted to multiple single links by a technique similar to [89], eliminating

the need for hypergraph modeling. The same polytope intersection method is used. However

flow variables are defined per edge, terminal, and timeshare. As a result flows should respect

specific timeshare capacity on the corresponding edge. It is argued that this method provides a

more accurate schedule for each transmission. The energy consumption is defined as a function

of timeshares instead of flows. This results in non-linearity of the objective which is addressed

by an iterative method.

In [50], fundamental bounds on the benefit of network coding are discussed. In the particular

case of a single wireless multicast, it is shown that both rate and energy gains of network coding

are bounded by a constant factor.

5.4 Network Model

Our basic network model includes a static multi-hop single-channel wireless network. All

nodes are assumed to have single transceivers and transmit at a fixed power level. The set
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of nodes is represented by N . For each node i ∈ N the set of reachable neighbors is given

by N(i) ⊆ N . We assume that in the absence of interfering transmissions, all nodes in N(i)

can hear a transmission from i without error, i.e., lossless wireless channels. We use protocol

interference model: all interfering transmissions are lost. In network coding analysis, nodes are

assumed to have linear network coding capability. Similar to [82], hyperarcs are used to model

the wireless broadcast: a transmission from node i to any subset J ⊆ N(i) is modeled by a

hyperarc (i, J). Let A be the set of all hyperarcs, then the wireless network can be represented

by hypergraph H(N ,A). Without loss of generality we assume all hyperarcs have unit capacity.

Next we define conflicting hyperarcs in the same way they are defined in [82]. The meaning

of conflict here is that two hyperarcs cannot be active at the same time. Two hyperarcs (i1, J1)

and (i2, J2) conflict if and only if at least one of the following conditions is true:

1. J1 ∩ ({i2} ∪N(i2)) 6= ∅ .

2. J2 ∩ ({i1} ∪N(i1)) 6= ∅ .

The above conditions cover half-duplex constraint, i.e., a node cannot receive and transmit at

the same time, and secondary interference model, i.e., a receiver may not be in the range of

two transmissions.

Again following the framework of [82], all the conflict relations in the hypergraph H(N ,A)

are captured by an undirected conflict graph G(V, E). Vertexes in V represent hyperarcs in A.

For every pair of conflicting hyperarcs in A, there is an undirected edge in E between their

corresponding vertexes in V.

5.5 Scheduling

An independent set in G represents a set of hyperarcs all of which can be active at the same

time without interference or violation of single transceiver constraint.

Following the notation in [38], we can define a usage vector U of length |A| to represent the

fraction of time each hyperarc is active. Based on [38, Theorem 2], we have:

The necessary and sufficient conditions for a usage vector to be schedulable is that the usage

vector lies within independent set polytope of the conflict graph.
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Such a schedulable usage vector is referred to as a realizable network in [89]. The indepen-

dent set polytope is the convex hull of incidence vectors of all maximal independent sets. An

independent set is maximal if it is not a subset of any other independent set. Similar to [82],

we define a length-|A| binary incidence vector corresponding to each maximal independent set

k:

IiJk =


1 if (i, J) ∈ maximal independent set k

0 o.w.

∀(i, J) ∈ A . (5.1)

Let I = {Ik}. The independent set polytope can then be formulated as:

POLY (I) =

{∑
k

τk · Ik

∣∣∣∣∣ ∑
k

τk = 1 ∧ τk ≥ 0

}
. (5.2)

Here {τk} represents timeshares. Any assignment {τk} produces a realization of the wireless

network with a scheduled capacity for each hyperarc. We denote this scheduled capacity by

c̄iJ :

c̄iJ =
∑
k

τk · IiJk , ∀(i, J) ∈ A . (5.3)

∑
k

τk = 1 , τk ≥ 0 , ∀k . (5.4)

Therefore corresponding to each set of schedulable timeshares {τk} we have a set of scheduled

capacities {c̄iJ}.

While equations (5.3) and (5.4) give a linear formulation of schedulable capacities, the main

difficulty remains in finding maximal independent sets. In general, the number of maximal

independent sets grows exponentially with the size of input graph (conflict graph in our case).

We will discuss this problem in later sections. In what follows we would refer to equations (5.3)

and (5.4) as the scheduling constraints.
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5.6 Network Coding

5.6.1 Multicast rate region

We model a multicast session by M(s, T ) with the source s ∈ N and the set of terminals

T ⊂ N . Multicast rate region is the intersection of two polytopes: independent sets polytope

(set of scheduled capacities) and the flow polytope. Equations (5.5) and (5.6) show the flow

polytope according to network coding assumptions. R is the multicast rate.

∑
j∈J

f tiJj ≤ c̄iJ , ∀t ∈ T , ∀(i, J) ∈ A . (5.5)

∑
(i,J)

∑
j∈J

f tiJj −
∑

{(j,J)|i∈J}
f tjJi =



R if i = s

−R if i = t

0 o.w.

, ∀i ∈ N , ∀t ∈ T . (5.6)

In this notation, variable f tiJj represents the value of flow from node i to node j that is

sent over hyperarc (i, J). Equation (5.5) states that sum of flows to a specific terminal t

on each hyperarc is bounded by the scheduled capacity of the hyperarc. However, there is

no cross-constraint for flows to different terminals. This is the fundamental network coding

assumption: on any given hyperarc, flows to different terminals are coded together and treated

as if they are sharing the same capacity. Equation (5.6) is the hypergraph version of standard

flow conservation constraint. This is an advantage of network coding formulation that flow

constraints are written independently per terminal.

The multicast rate region under network coding, therefore, is formulated as the intersection

of linear equations (5.3), (5.4), (5.5) and (5.6). Any feasible multicast rate R must lie within

this intersection. Although the rate formulation is linear, it still involves exponential number

of maximal independent sets to account for in (5.3) and (5.4). Figure 5.1 shows the overview of

our modeling and problem solving methodology. The formulations for scheduling and different

parameter optimizations are jointly solved. Assuming that scheduling is done optimally by

considering all MISs, the scheduling component becomes independent of input multicast session.
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5.6.2 Energy

For simplicity and without loss of generality, in the single transmission power model we

define one unit of energy being equal to one unit of flow sent over one hyperarc. Although

simple, the energy model fits our objective of evaluating fundamental energy-rate relations

under optimal scheduling where all transmissions are scheduled and interference-free. It also

suits the grid network models used in the simulations where all hops are equal distance.

Let eiJ be the energy used by hyperarc (i, J) in each time unit. Equation (5.8) defines eiJ

as the maximum of all terminal flows on (i, J).

E =
∑

(i,J)∈A
eiJ (5.7)

∑
j∈J

f tiJj ≤ eiJ , ∀t ∈ T , ∀(i, J) ∈ A . (5.8)

It is important to note the difference between eiJ in equation (5.8) and c̄iJ in equation (5.5).

c̄iJ serves as the capacity limit for each hyperarc which may or may not be fully used. eiJ , on

the other hand, is used for energy minimization and would be exactly equal to the maximum
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of terminal flows on (i, J). In our analysis we wish to minimize the total energy consumption:∑
(i,J)∈A eiJ .

5.6.3 Delay

The delay minimization is a hard sub-problem. A realistic model should capture variable

link transmission delays, buffering delays, and coding delays. Our focus in this paper is to com-

pare network coding and routing under optimal scheduling. Given the complexity of scheduling

and routing sub-problems, we choose a simpler delay model that serves as a lower-bound. We

define the delay from source to each terminal as the length, hop-count, of longest flow path to

that terminal. It is worth noting that even with the lower-bound delay model, delay minimiza-

tion remains a hard sub-problem. This model suits the grid network models (with equal hop

distances) used in our simulations.

Equation (5.9) makes sure that binary variable btij is equal to 1 if there is a non-zero terminal

t flow from node i to node j. L is a large constant. VariableDt
i represents the maximum distance

of node i from source s on all the terminal t flows. When btij is 1, the constraint in (5.10) makes

sure Dt
j at least equals Dt

i + 1. Therefore, Dt
t is the maximum hop distance of terminal t from

source s on any of its own flow paths. Parameter D limits the maximum delay (flow path

length) from source to all terminals. This can be an input parameter, e.g., when minimizing

rate subject to a given delay, or an optimization variable when minimizing the delay.

∑
{(i,J)∈A|j∈J}

f tiJj ≤ L · btij , (5.9)

Dt
j −Dt

i ≥ (L+ 1) · btij − L , (5.10)

Dt
s = 0, Dt

t ≤ D , (5.11)

btij ∈ {0, 1}, Dt
i ∈ Z+ , (5.12)

∀t ∈ T , ∀i ∈ N , ∀j ∈ N(i) .
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5.7 Routing

5.7.1 Multicast rate region

In routing paradigm, formulating multicast rate region becomes harder. In fact it depends

on the number of disjoint multicast trees used. For example, a routing formulation may be

written to maximize the multicast rate over a single multicast tree. A single minimum cost

multicast tree is an example of minimum cost Steiner tree which is NP-hard [47].

Instead of limiting the solution to a single multicast tree, we could allow the rate to be

divided between multiple capacity-disjoint multicast trees. In this case, each tree delivers its

own share of rate. While trees may use the same hyperarcs, they may not share any capacity

on any common hyperarc. This allows us to add the sub-rates on each tree to find the total

delivered multicast rate. In this sense, the trees are called disjoint. The problem of increasing

the multicast rate by adding multicast trees is similar to the problem of packing Steiner trees

[37]. As we increase number of trees in the formulation the result may become better or remain

the same but it is never worse.

In the network coding formulation, flows to different terminals could share capacity on any

hyperarc. However in routing, flows to different terminals can only share capacity on the same

tree, i.e., there is no inter-tree sharing. Moreover, in the network coding formulation, flows are

defined per terminal but in routing, flows are defined per tree and per terminal. Other than

that, the basic hypergraph modeling and formulation of the set of scheduled capacities, (5.3)

and (5.4), are the same.

We now give the multicast rate region formulation. Equations (5.13) to (5.20) maximize

multicast rate that can be sent over |Z| capacity-disjoint multicast trees. In equation (5.13),

Rz is the rate delivered by tree z ∈ Z, and R is the total rate. Variable fziJ is the flow of

tree z on hyperarc (i, J). Variable fz,tiJ is the flow of terminal t, on tree z, on hyperarc (i, J).

Equation (5.14) states the fact that trees do not share capacity on any hyperarc. Equation

(5.15) defines fziJ as the maximum terminal flow on each hyperarc for each tree. This equation

also implies that flows to different terminals on the same tree may share capacity. Ultimately

non-zero terminal flows will have the same value on each hyperarc for each tree.
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Equation (5.16) bounds the flow between each pair of neighboring nodes in terms of all

hyperarcs originating from one and covering the other. In the optimal solution, there could be

a non-zero flow value fz,tij for at most one j ∈ N(i); flow to a certain terminal follows a simple

path and does not split. The inequality allows for other neighbors to receive zero value flow.

Equality would eliminate all hyperarcs and limit the solution to simple arcs. Equation (5.17)

is the flow conservation constraint. Note that it is written per terminal and per tree for each

node.

The following equations are to make sure that flows belonging to each tree would in fact

form a tree. Equation (5.18) states that each node, if belongs to a tree, has one parent node

on that tree. The binary varaible gzij is set to 1, if node i is the parent of node j on tree z. The

source node is the root and has no parent. Equation (5.19) indicates that any terminal flow

must come from the parent node on each tree. Such flow could be carried by any (and many)

hyperarcs originating from the parent node. Therefore, in equation (5.17), sum of incoming

flows would be equal to incoming flows from the parent node. Finally, equation (5.20) defines

binary variables gzij .

In summary, any multicast rate R that satisfies constraints (5.13) to (5.20) together with

constraints (5.3) and (5.4) is achievable using |Z| multicast trees.

R =
∑
z∈Z
Rz . (5.13)

∑
z∈Z

fziJ ≤ c̄iJ , ∀(i, J) ∈ A . (5.14)

fz,tiJ ≤ f
z
iJ , ∀(i, J) ∈ A , ∀t ∈ T , ∀z ∈ Z . (5.15)

fz,tij ≤
∑

{(i,J)∈A|j∈J}
fz,tiJ , ∀i ∈ N , ∀j ∈ N(i) , ∀t ∈ T , ∀z ∈ Z . (5.16)

∑
{j∈N(i)}

fz,tij −
∑

{k|i∈N(k)}
fz,tki =


Rz i = s

−Rz i = t

0 o.w.

, ∀i ∈ N , ∀t ∈ T , ∀z ∈ Z . (5.17)
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∑
{i|j∈N(i)}

gzij


≤ 1 ∀j ∈ N − {s}

= 0 j ∈ {s}
, ∀z ∈ Z . (5.18)

∑
t∈T

fz,tij ≤ L · g
z
ij , ∀i ∈ N , ∀j ∈ N(i) , ∀z ∈ Z . (5.19)

gzij ∈ {0, 1} , ∀i ∈ N , ∀j ∈ N(i) , ∀z ∈ Z . (5.20)

5.7.2 Energy

Following the same energy assumptions for network coding, energy per hyperarc under

routing would be: ∑
z∈Z

fziJ = eiJ , ∀(i, J) ∈ A . (5.21)

5.7.3 Delay

Since gzij is used to make sure that each node on each tree has exactly one parent, the same

variable may be used to find the distance of each node from source on each tree.

Dz
j −Dz

i ≥ (L+ 1).gzij − L , (5.22)

Dz
s = 0, Dz

t ≤ D , (5.23)

Dz
i ∈ Z+ , (5.24)

∀i ∈ N , ∀j ∈ N(i) , ∀t ∈ T , ∀z ∈ Z .

5.8 Illustrative Examples and Observations

In this section, we present examples of maximum rate under network coding and routing

on a 3-3 grid network for the purpose of illustration. Figure 5.2 shows a unit distance 3-3 grid

network. Each node has equal radio and interference range of unit distance, i.e., each node
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Figure 5.2 The example 3-3 grid network. All nodes have unit transmission and interference

ranges.

can transmit to and interfere with all its lateral neighbors but not the diagonal ones. The

interference model is protocol model with secondary interference, i.e., a receiver may not be in

the range of two transmissions. All wireless links are assumed to have unit capacity.

Next we look at the shape of optimal solution for an example multicast session of (0, (5, 7)).

Under network coding, the maximum achievable rate is found by timesharing over 5 maximal

independent sets (MISs) as shown in Figure 5.3. In addition to point-to-point links, in two

cases, MISs include point-to-multipoint links, i.e., links (4, {5, 7}) and (8, {5, 7}). All such

links are, of course, modeled as hyperarcs in the hypergraph modeling. For each MIS, its

corresponding optimal timeshare is also given. Note that sum of all timeshares is equal to 1.

In order to find the scheduled capacity for each link, we need to sum timeshares of all MISs

covering that link. For example link (0, 1) appears in two MISs with timeshares of 1/8 and

1/4. Therefore the scheduled capacity of link (0, 1) is 3/8. Figure 5.4(a) shows the calculated

scheduled capacities for all links. Only links with non-zero capacity are shown. Figures 5.4(b)

and 5.4(c) show the flow from source (node 0) to each terminal. Note that flows respect the

scheduled capacity at each link and flow conservation at each intermediate node. The sum of

flows to each terminal is equal to 3/4 which gives the maximum achievable rate of 0.75.
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Figure 5.3 Maximum rate with network coding: optimal scheduling.
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Figure 5.4 Maximum rate with network coding: (a) scheduled capacities, (b) flows to the first

terminal (node 5), (c) flows to the second terminal (node 7). Multicast rate = 3/4.
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Figure 5.5 Maximum rate with routing: (a) 5 MISs shown in different colors, (b) scheduled

capacities.

Close observation of Figure 5.4(a) shows that network coding is used at node 8. The

incoming links (5, 8) and (7, 8) each have scheduled capacity of 1/4. There is one outgoing

point-to-multipoint link (8, {5, 7}) with scheduled capacity of 1/4. Under routing assumptions,

the outgoing capacity of 1/4 would become the bottleneck as compared to the sum of incoming

capacities which is 1/2. However, under network coding assumptions, if the incoming flows

belong to different terminals (as shown in Figures 5.4(b) and 5.4(c)), they can be coded together.

Therefore the outgoing capacity of 1/4 would be enough.

We also investigate maximum rate under routing for the same example. This time, the

solution includes 5 different MISs. For brevity, we have summarized all MISs in one figure.

Figure 5.5(a) shows 5 MISs in different colors. In the solution, each MIS gets a timeshare of

1/6 except for MIS {(1, 2), (3, 6), (4, {5, 7})} (in dark brown) whose assigned timeshare is 2/6.

Therefore, sum of timeshares is 1. We have calculated the scheduled capacity for each link in

Figure 5.5(b). For example, link (0, 1) appears in two MISs (two colors) with timeshares of 1/6

assigned to each. Therefore, the scheduled capacity of link (0, 1) is 2/6.

As shown in Figure 5.6, the routing ILP packs 4 multicast trees on this network each

delivering a flow of 1/6. As a result, the multicast rate under this routing solution is 4/6 or

approximately 0.66. We also examined ILPs for packing 5 and 6 trees and maximum rate under

routing did not increase; this could suggest that rate of 0.66 is in fact maximum rate under

routing.
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Figure 5.6 Maximum rate with routing: 4 multicast trees each sending a rate of 1/8. Multicast

rate = 4/8.
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5.8.1 Observation: network coding theorem in joint optimization framework

An interesting observation is related to scheduling and network coding being jointly solved.

When network coding is solved independent of scheduling, network coding theorem states that

maximum multicast rate is equal to the minimum of max-flows from source to all terminals.

However, the same theorem may not be applied to the joint scheduling and network coding

framework. To show this, one can use the same joint scheduling and network coding formulation

to find the max-flow between source-terminal pairs. In our case, the max-flow in either case

of (0, 5) or (0, 7) turns out to be higher than maximum multicast rate of 0.75. The max-flows

values are indeed equal to 7/9 or approximately 0.77 (not shown in the figures).

The reason is that optimizing for a single pair such as (0, 5), would result in a different

scheduling and a different set of scheduled capacities than optimizing for the multicast session

(0, (5, 7)). In other words the max-flow and multicast problems are solved on different sets of

realizable networks1.

5.9 Experimental Evaluation and Discussion

We have formulated rate, energy, and delay under both network coding and routing as-

sumptions in Section 5.6 and Section 5.7. Each of the three performance parameters can be

used as an objective or a constraints in an optimization problem. Here, we wish to consider

the following optimization problems:

• Maximizing rate

• Minimizing energy subject to the rate demand

• Minimizing delay subject to the rate demand

We are going to solve these problem in both network coding and routing paradigms.

We start with the 4-5 grid network with unit lateral distance in Figure 5.7. Each node has

equal radio and interference range of unit distance. In other words a node can transmit to all

its lateral neighbors but not the diagonal ones. The interference model is protocol model with

secondary interference, i.e., a receiver may not be in the range of two transmissions.

1To the best of our knowledge, this observation has not been made before.
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Figure 5.7 4-5 grid network.

Table 5.1 gives the general information about some grid networks. Each row represents a

grid network of a different size. While number of hyperarcs increases linearly with number of

nodes, the total number of MISs increases exponentially. We note that MISs are found on a

conflict graph whose vertexes represent hyperarcs in the network graph. After modeling each

grid network and its corresponding conflict graph, we used igraph library [23] to find all MISs.

For the 4-5 grid, we have also included a second column (marked by an asterisk) in which,

instead of modeling hyperarcs, only simple arcs are modeled. Modeling just simple arcs is

equivalent to not having any broadcast link transmission in the network, which is a disad-

vantage. We have included this column to show its effect on the size of conflict graph and

number of MISs. Independence number is the size of largest independent set, i.e., maximum

independent set.

As the last row in Table 5.1 shows, even 5-5 grid has over 13 million MISs. Therefore, to

consider all MISs, the formulation would require the same number of timesharing variables.

For our primary simulation results, we work with the 4-5 grid network (Figure 5.7) whose set

of MISs is still manageable. We generate 100 random multicast sessions of size 3. Source and

two terminal nodes are selected randomly out of 20 nodes in the grid for each sessions. We use

IBM ILOG CPLEX 12.5 [33] as the optimization solver.
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5.9.1 Complexity

The first and most important difficulty with solving any of the above optimization problems

is dealing with exponential number of MISs. Formulating the set of all scheduled capacities

requires collecting exponentially many MISs which is hard. The second hard component has

to do with packing Steiner trees for the routing formulation which is NP-hard [37]. In other

words, even given the set of scheduled capacities, solving routing optimization problems is NP-

hard. In network coding, in contrast, solving maximum rate and minimum energy problems

for a given set of scheduled capacities takes the form of linear program which is solvable in

polynomial time. Finally, the third hard component is the delay. Our formulation of delay uses

integer variables which even in the case of network coding results in an ILP formulation and is

hard to solve.

In what follows, we propose heuristic scheduling methods to reduce the complexity of

scheduling sub-problem and yet arrive at near optimal results.

Table 5.1 Properties of sample grid networks. In 4-5 grid*, simple arcs are used instead of

hyperarcs.

2-2 grid 3-3 grid 4-4 grid 4-5 grid 5-5 grid 4-5 grid*

# of nodes 4 9 16 20 25 20

# of hyperarcs 12 55 128 172 231 62

Independence # 2 4 8 10 11 10

# of MISs 8 293 30,908 460,821 13,608,626 24,132

5.9.2 Maximizing the rate

We consider this problem as the core component in both network coding and routing

paradigms. Since considering all MISs results in long convergence times even for network

coding, we examine 4 sub-optimal cases that involve collecting only a subset of all MISs, in

addition to complete set of MISs. Random MISs are found by randomly selecting (without

replacement) a given number MISs from the pool of all MISs.

• All MISs (MIS-all)

• All MISs when a simple-arc model is used (MIS-arc)
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• 500 randomly selected MISs (MIS-500)

• 1000 randomly selected MISs (MIS-1000)

• 2000 randomly selected MISs (MIS-2000)

5.9.2.1 Network coding

Table 5.2 shows the average rate reported by each algorithm over the same input of 100

random sessions for network coding.

Table 5.2 Average rate of different algorithms under network coding.

MIS-arc MIS-500 MIS-1000 MIS-2000 MIS-all

Average rate 0.719 0.793 0.830 0.836 0.861

Optimality gap 16% 8% 4% 3% 0%

Time (s) 0.241 0.020 0.028 0.043 6.171

Given that optimal solution was found over nearly half a million MISs (Table 5.1), we see a

remarkable performance by randomly selecting a much smaller number of MISs. For instance,

with only 1000 randomly selected MISs an optimality gap of 4% is achieved. The figure also

shows the importance of hyperarc modeling. The simple-arc modeling removes the benefit of

broadcast transmission in the wireless grid. Under simple-arc modeling, even considering all

MISs results in much lower performance (16%) compared to selecting 1000 random MISs under

hyperarc modeling (4%).

Another advantage for randomly selecting a subset of MISs is the convergence time in

CPLEX. The reported time is the average time for a single multicast session in seconds. While

MIS-arc reduces the time at the cost of 16% optimality gap, MIS-1000 reduces the gap to 4%

and further reduces the time by one tenth compared to MIS-arc. We use MIS-1000 is our

heuristic of choice to deal with the first hard component of the problem namely exponential

number of maximal independent sets.

5.9.2.2 Routing

We use MIS-1000 scheduling to find maximum rate for the same set of 100 random sessions

under routing. As we discussed before, maximum achievable rate depends on the number of
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Figure 5.8 Maximum rate: routing vs. network coding.

disjoint multicast trees we pack. Figure 5.8 shows the maximum rate and the convergence

time for packing 1 to 5 disjoint trees alongside the network coding result for MIS-1000. The

figure shows the rate percentage of each routing method with respect to network coding. The

convergence time ratio is also shown as a percentage with respect to largest time: packing 5

trees.

While convergence was completed for 1 and 2 trees, we had to a set time limit of 120 seconds

per session for 3, 4, and 5-tree cases. It could virtually take an unbounded time for the solver

to converge for all sessions. Therefore, the figure is rather a representation of time-effort versus

achievable rate when it comes to routing.

The figure suggests that routing rate can get very close to network coding rate however at

a much larger time. For example, the 5-tree result has a gap of mere 4.2% with network coding

but its time-to-converge is not comparable to network coding: average time of 111 seconds for

5-tree routing versus 0.028 seconds for network coding. Using a single tree provides a reasonable

convergence time but the the rate is dropped by 56%.

5.9.3 Minimizing energy

We now look at the problem of minimizing energy for a given rate demand. This problem

represents relation between energy and rate in our model of wireless multicast and solving it
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Figure 5.9 Energy as a function of rate demand.

could provide insight into the trade-off between the two performance measures. We also use

energy as another measure to compare MIS-1000 with MIS-all here.

Figure 5.9 shows a column diagram for each of the scheduling methods. The horizontal axis

is scaled according to the maximum rate of MIS-1000. The maximum rate of MIS-all is about

4% more at 1.04. Lower points are fractions in increments of 0.1 of MIS-1000 maximum rate.

Some interesting observations:

• MIS-1000 only lags behind MIS-all when the demanded rate reaches the maximum value.

For all lower fractions the energy results are nearly equal.

• In both methods energy is a non-linear and increasing function of rate, i.e., higher rates

require increasingly higher energy.

• Energy reported by MIS-all at its maximum rate (point 1.04) is nearly equal to energy

reported by MIS-1000 at its maximum rate (point 1).

Next we investigate how routing and network coding compare in terms of energy it takes

to deliver certain fractions of maximum rate. For the scheduling we use MIS-1000. Network

coding is compared with 3-tree routing. In Figure 5.10, the maximum rate of 3-tree routing is

normalized as 1.02. Horizontal axis shows fractions of maximum 3-tree rate in increments of

0.1 from 0.1 to 1.0.

2Note that maximum rate under 3-tree routing was, on average, about 10% lower than that of network coding
(Figure 5.8).
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Figure 5.10 Minimum energy for different fractions of maximum rate: network coding vs.

routing.

Minimum energy of network coding for each fraction and each session can be found quickly

by solving corresponding LPs. However in the case of routing, in order to collect results for 100

sessions on 10 fractions each, we had to introduce time limits for each ILP. The shown results

are based on a 120-second time limit. For each ILP, in the given time limit, we collect both

best integer solution and best integer bound. The difference between the two values represents

the optimality gap. However, since the integer solution and best bound only show a 3% gap in

the worst case (point 1.0), 3-tree results are optimal for the most part and close to optimal in

higher rates. We make the following observations:

• 3-tree routing has a very close energy performance compared to network coding for frac-

tions 0.8 and lower.

• Network coding performs better in higher rates. Specifically at the maximum rate case

(point 1.0), 3-tree routing requires over 20% more energy to deliver the same rate.

• Routing, too, shows non-linear energy-rate relation: increasingly more energy at higher

rates.

5.9.4 Minimizing delay

Next we look at the relation between rate demand and delay. This is done through minimiz-

ing delay for a range of rate demands. We work with the same set of 100 random sessions. The
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delay is measured in the number of hops for the longest flow path for each session (Equations

(5.9) to (5.12)). Including delay constraints results in an ILP even under network coding. Due

to convergence time problem, we only present network coding results here.

In Figure 5.11, on the horizontal access, the maximum rate under network coding without

any delay constraint is normalized as 1. Lower fractions of maximum rate are also listed in

increments on 0.1, starting from 0.1. For each of the 100 random sessions, we have found the

minimum delay for all fractions of maximum rate (from 0.1 to 1.0). Because of the convergence

time problem, we introduced a 120-second time limited for each ILP. Also we limited the results

to MIS-1000 scheduling.

For each ILP, in the given time limit, we collect both best integer solution and best integer

bound. The difference between the two values represents the optimality gap. Each point on the

horizontal axis of Figure 5.11 shows the best integer solution and best integer bound, averaged

over 100 sessions. As Figure 5.11 shows, we in fact have the optimal results for maximum rate

(fraction 1.0). The other non-optimal results are lower-bounded by the best bounds.

To put the results in perspective, we also calculated the actual source-terminal shortest

path lengths on the 4-5 grid. The average shortest path length (hop-distance) between source

and farthest terminal node for all sessions is 3.88 hops. We make the following observations:

• With increasing rate demand, minimum delay can only grow. On one end of the diagram,

point 0.1, the integer solution is very close to the best bound and on the other end, point

1.0, we do have the optimal integer solution. For the other middle points, for instance

point 0.4, the integer solution of 0.1 in fact provides a better lower-bound. Therefore,

our reported integer solutions are much closer to their optimal value than what their best

bounds might imply.

• Delay, too, demonstrates a non-linear behavior with respect to increasing rate demand.

As Figure 5.11 shows, approaching the maximum rate limit, the number hops source-

terminal flows have to travel increases sharply. What happens here is that paths tend to

go through boundaries of the network to reduce interference and deliver more rate.
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Figure 5.11 Delay as a function of rate demand.

• The average number of hops for the maximum rate is 9.57. When compared to the

previously reported average hop-distance of 3.88 on the grid, it shows how longer and

more diverse paths are chosen to avoid interference.

• The largest delay was reported for session (2, {3, 9}) which is 13 hops. This is equal to

the longest path on the boundary of the grid in Figure 5.7: starting from node 2, moving

counter-clockwise on the boundary, and ending at node 3. Again this example shows how

longer and more diverse paths are used to avoid interference.

5.9.4.1 Effect of delay on energy

We also examined the difference delay constraint makes in minimum energy. Here, we find

minimum energy for maximum rate with and without a tight delay constraint. Each session has

a maximum rate under MIS-1000. We have also found minimum energy for the maximum rate

under MIS-1000 previously. We also have the minimum delay (number of hops) required for

maximum rate for each session. We find minimum energy for maximum rate subject to delay

being less than or equal minimum delay. This is compared to minimum energy for maximum

rate when there is no delay constraint. Our result averaged over 100 random sessions shows

adding minimum delay constraint increases the minimum required energy by 12% from average

of 4.21 to 4.71.
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5.9.5 Maximum rate on larger networks

There is an interesting observation when looking at the maximum rate results on the 4-

5 grid: sessions whose source and terminals are closer to center of the network and farther

from boundaries show higher rates, particularly 1 or close to 1. It is worth noting that in our

network model with unit capacity wireless links, maximum rate for any connection (unicast

or multicast) is upper-bounded by 1. This can be seen by looking at the outgoing flow from

source or incoming flow to a terminals. For example no two outgoing links of source node can be

active at the same time. Given that all individual links have unit capacity, by any assignment

of timeshares the scheduled outgoing capacity of the source would be at most 1.

It would, therefore, seem that given a sufficiently large grid network, the maximum rate for

a multicast session whose source and terminals are sufficiently far from boundaries should be

1. We examined this idea experimentally by extending the 4-5 grid to a 10-10 grid. The 100

random sessions are modified such that they all fall into a central 4-5 subset of the extended

grid. In other words with respect to the 4-5 subset, we have the same set of random sessions.

Table 5.3 shows the average maximum rate for the same 100 random sessions mapped to

the center of a larger 10-10 grid. It was not possible to find all maximal independent sets for a

10-10 grid as they are in the order of 2100. Therefore, we found results for 1000, 2000, 5000, and

10000 randomly selected sets of MISs. In this case since the pool of all MISs is not available, we

would build the given number (e.g., 1000) of random MISs one by one. To build each random

MIS, we start by a new random ordering of all hyperarcs and an empty independent set. We

then process the list from beginning to end adding hyperarcs if and only if they are mutually

non-conflicting with all hyperarcs currently in the set. The resulting set is maximal in the sense

that no new hyperarcs may be added.

Based on the results in Table 5.3, we make two conclusions:

• The average maximum rate being very close to 1, confirms our conjecture about achieving

upper-bound of 1 given a sufficiently large network. To better see the effect of a larger

network, one can compare the averages in Table 5.3 with the average maximum rate

reported for the same set of sessions on the 4-5 grid in Table 5.2: 0.861.
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• Achieving the upper-bound also shows the effectiveness of scheduling heuristic: randomly

selecting a relatively small subset of all MISs.

Table 5.3 Maximum rate for 100 session mapped to the center of a larger 10-10 grid.

Scheduling MIS-1000 MIS-2000 MIS-5000 MIS-10000

Average max rate 0.968 0.988 0.998 0.999

5.9.6 Analytical insight on MISs

We seek an explanation as for why such relatively small subsets of random MISs are capable

of achieving near optimal results. We draw insight from the core component of multicast

network coding problem, i.e., the maximum flow problem. We claim that maximum flow

between any pair of nodes on an infinite gird can be found using just 3 independent sets. We

show this by constructing the solution.

1

s t

s t

t

t

t

s

s

s

flow = 1

flow = 1/2

flow = 1/3

flow = 1/3

tsflow = 1/3

flow = 1/3

Figure 5.12 Flow on a single path.

In Figure 5.12 colors red, green and blue represent 3 different timeshares. Under our network

and interference model:

• A single hop path can carry a unit flow.

• Two timeshares are required in a 2-hop path resulting in a flow of 1/2.

• In a 3-hop path, no two links may be active at the same time. This results in 3 timeshares

and a flow of 1/3.

• In a path longer than 3 hops, the same timeshares may be repeated (red, green and blue)

without violating interference or wireless constraints.
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Therefore, a flow of at least 1/3 may always be sent from s to t by a single path. Given a large

enough grid, we can find 3 paths diverse enough such that the inter-path interference is limited

to 3 outgoing links of s and 3 incoming links of t. Paths then may be adjusted so that all paths

start in different colors (outgoing links of s) and end in different colors (incoming links of t)

while the sequence of red, green and blue is repeated on each path.

Figure 5.13(a) shows a scenario where two paths end in red color (same timeshare) which

violates the single transceiver constraint at t. In Figure 5.13(b), top and bottom paths are

extended by 2 hops to resolve this problem. In general, a path that ends in red, for instance,

would end in blue when extend by 2 hops. With another 2-hop extension, the path would end

in green (since the color sequence repeats). Therefore, we can always make sure that all flow

paths start and end in different colors. As a result a maximum flow of 1 is sent via 3 paths

using even scheduling on 3 independent sets (colored red, green and blue). It is important to

note that under our network and interference model, rate of 1 is the upper-bound. The main

1

s t s t

(a) (b)

Figure 5.13 Scheduling 3 flow paths. (a) Two paths end in the same color (red). (b) Top and

bottom paths are extended by 2 hops; All paths end in different colors. Maximum

flow of 1 is achieved by 3 independent sets (red, green, and blue).

observation is that while the formulation of optimal scheduling involves exponential number
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of MISs, the solution itself may not. This is one explanation for why small random subsets of

MISs were shown to be efficient in our experimental evaluations.

5.10 Conclusion

We built on the formulation of multicast rate region under joint scheduling and network

coding for rate maximization and extended it to include energy and delay minimization subject

to rate demand. In a similar way, rate maximization, energy and delay minimization are

also formulated under joint scheduling and routing. The primary hard component of both

formulations, i.e., scheduling MISs, is addressed by randomly selecting a relatively small subset

of MISs. The rate maximization results show the effectiveness of this simple scheduling method

as compared to considering all of the exponentially growing MISs. Joint scheduling and routing

was shown to be able to perform close to joint scheduling and network coding in terms of

maximum rate. However the solution suffered from huge increase in running time (average time

of 111 seconds for 5-tree routing versus 0.028 seconds for network coding). The relation between

energy and rate was investigated in joint scheduling and network coding/routing. Minimum

energy was shown to grow non-linearly as a function of rate demand in both scenarios. It was

also shown that only when approaching the maximum rate, network coding provides energy

benefit over a time-limited routing solution. The same analysis was also performed for the

relation between delay and rate. The results show non-linear delay growth as a function of

rate; the delay increases sharply when rate approaches its maximum. Finally, the effectiveness

random selection of MISs was verified again by achieving the upper-bound multicast rate on

a larger network. We have also presented analytical insights on the effectiveness of selecting

small MIS subsets.

One direction for future work involves examining the energy-rate and delay-rate non-

linearity in more general or realistic network models such as lossy channel models, physical

interference model, and multiple transmission powers. Another is to extend our theoretical

analysis supporting the experimental results on effectiveness of random MISs. The whole

study can also be extended for multiple multicast sessions with varied session sizes.
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CHAPTER 6. CONCLUSION

This dissertation has been an effort in investigating and utilizing the potential of network

coding in improving performance of communication networks. The diversity of applications

discussed are but an indicator of such potential: from survivability enhancement for the Internet

backbones to energy saving in wireless networks.

6.1 Network Coding for Survivability in Backbone Networks

In the first component, application of network coding in protection of unicast and multicast

optical connections was investigated. Due to the challenges in implementing full linear network

coding capability at optical level, the proposed approaches are designed based on simple network

coding operations, namely logical OR and XOR.

In the case of unicast connections, our work was based on the idea of 1+N protection [41].

Since the optimal cost 1+N solution is NP-hard to find, one may only compute such optimal

solutions offline. This is not suitable for protection of dynamic traffic in real-world scenarios.

Therefore, the challenge is to design heuristic algorithms that can deliver solutions with near-

optimal cost and have online computable polynomial running time. In order to design such

an algorithm, the problem was first converted to a partitioning problem. The main questions

are: which unicast connections should be protected together and which connections should

be protected independently. To protect connections against single link failures, a group of

jointly protected unicast connections would be provisioned by link-disjoint working paths and

protected by a link-disjoint protection subgraph that takes the form of a Steiner tree.

A greedy partitioning algorithm is designed that adds a new unicast connection to a group

of jointly protected connections only if a local cost function is reduced. Once the partitioning
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is complete, Greedy Shortest Paths and Greedy Steiner Tree heuristic algorithms are used to

find link-disjoint working paths and link-disjoint Steiner protecting subgraph for each parti-

tion. Different partitions are provisioned and protected independently. The proposed heuristic

approach has a worst case time complexity of O(|V |2.|C|4) where |V | is the number of vertexes

(nodes) in the network graph and |C| is number of unicast connections to be protected.

Next, the cost of the algorithm is evaluated experimentally by simulating different network

scenarios. In comparison to the traditional 1+1 protection, the algorithm shows cost savings

of 21.5%, 34.5%, and 60.2% in 14-node NSFNET, 11-node COST239, and 14-node complete

graph networks. The main observation is that the cost efficiency of our heuristic 1+N algorithm

increases when the number of connections or graph density is increased.

Moreover, the performance of our online heuristic is compared to offline optimal solution.

Due to long convergence times, comparison is done for two cases of 5 and 10 connections in

NSFNET and COST239 networks. In worst case scenario, our algorithm has 5.7% and 13%

increase in cost respectively. Finally, the performance of 1+N protection in asymptotic case is

analytically investigated which shows that, compared to traditional 1+1 protection, 1+N can

achieve 66.6% cost reduction in complete graphs.

In the case of multicast protection, the idea of multicast 1+1 protection is proposed. It is

based on the traditional routing-based unicast 1+1 protection: two copies of each data unit

are sent from source to the destination to guarantee the data delivery in the event of a single

link failure. The same approach can be applied to multicast protection; two copies of each data

unit are sent to each terminal. However, unless flows to different terminals are allowed to share

link capacity on common links, this method would be inefficient in terms of bandwidth usage.

The bandwidth efficiency comes at the cost of increased recovery delay. An intermediate

node might have to select to forward only one of the incoming flows. In the event of an

upstream link failure, the intermediate node must reconfigure its switch to forward another

working flow and optical switch reconfiguration is time-consuming. Fortunately network coding

has a solution for this problem; it is via a simple logical operation (OR) at the intermediate

node. Instead of forwarding only one of the incoming flows, the intermediate node would code

(or merge) all incoming flows into one outgoing flow by OR operation. As long as at least one
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incoming flow is intact, outgoing flow does not change and the failure is masked. No rerouting

or switch reconfiguration is required and destination nodes would not experience any service

disruption under any single link/node failure. The necessary and sufficient conditions for the

existence of 1+1 protection solution under merging flows is simply 2-connectivity from source

to each destination. This allowes us to formulate the problem as a network flow problem which

can be solved to find minimum cost subgraph supporting multicast 1+1 protection. In addition

to optimal ILP formulation, three heuristic algorithms are also proposed as online solutions.

The simulation results on different versions of COST239 network show remarkable per-

formance by our best heuristic algorithm; compared to offline optimal solution, the cost is

increased by no more than 2.6% in the average case and by no more than 4.7% in the worst

case. Future work in multicast 1+1 protection would involve implementation of logical coding

operation at optical level, addressing the buffering and synchronization issues at the optical

level, and considering more realistic traffic models, bandwidth granularity, and traffic grooming.

6.2 Network Coding for Performance Optimization in Wireless Networks

Performance optimization in wireless networks is more challenging compared to wired net-

work due to inherent wireless constraints. For example, one such constraint is the number of

radios available at a wireless node. A single transceiver radio, for instance, would not allow

simultaneous transmission and reception at a wireless node. Another important challenge is

wireless interference. In comparison to a typical wired network, where all links can be inde-

pendently active, wireless links may interfere with or disrupt each other if simultaneously use

the same channel.

Given the mobility and reliance on battery power, energy consumption becomes an even

more important performance parameter in wireless networks. The limited bandwidth in single

channel scenarios would also require better utilization of available bandwidth.

Similar to the wired networks, network coding generalizes the routing logic when applied

to wireless networks. Such generalization, in particular, applies to broadcast links. Point-

to-multipoint or broadcast links are one of inherent benefits of using wireless medium in the
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routing paradigm. Network coding, too, takes advantage of this mode of communication, to

broadcast coded data to multiple receivers.

Network coding has been shown in the past to provide advantages in terms of rate, energy,

and delay in wireless networks. We seek to address network-layer performance optimization and

MAC-layer interference management is a joint manner. We address interference constraints in

wireless by scheduling wireless links. Given a valid schedule of wireless links, we have what is

referred to as a realizable network. Since solving performance optimization problems depends

on underlying realizable network, these two components are jointly solved.

We built on an existing formulation of multicast rate region under joint scheduling and

network coding due to [82]. To formulate the optimal solution, in the first step, a hypergraph

model is used to capture every possible point-to-multipoint transmission at every network node.

Next, all interference and single transceiver constraints are incorporated into a conflict graph.

Vertexes in the conflict graph represent wireless links or hyperarcs. Two vertexes are adjacent if

and only if they conflict with one another; they cannot be active at the same time. Scheduling

interference-free wireless links, therefore, takes the form of timesharing over MISs in the conflict

graph. The main problem here is that there are exponential number of MISs to account for.

On the positive side, such timesharing formulation is linear.

We extended the performance optimization to include rate, energy, and delay. Moreover,

routing-based formulation is presented in addition to network coding. This problem involves

three levels of complexity: scheduling over exponential number of MISs, routing, and per-

formance optimization (specially delay minimization). We observe that the scheduling is the

common hard component in all of the intended performance optimizations. We propose to

perform scheduling over small random subsets of MISs, thereby simplifying the common hard

component.

The effectiveness of heuristic scheduling, rate and energy benefits of network coding over

routing, and energy-rate and delay-rate relationships are experimentally evaluated on grid

network topology.
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• The heuristic scheduling is shown to be very effective in achieving near-optimal multicast

rate and energy. It is also shown that a small random subset of MISs continues to achieve

near optimal rate as the number of all MISs exponentially grows in a larger network.

• Energy-rate and delay-rate relationships is shown to be non-linear. The solution requires

increasingly more energy and longer paths as multicast rate demand increases. We are

able to intuitively explain this phenomenon by looking at the shape of solutions. In order

to deliver higher rates, the flow paths tend to diverge to the boundaries of the network,

thereby reducing inter-path interference. Longer paths in this case would result in more

energy consumption and more delay; both have non-linear growth.

• With regard to comparison of network coding and routing, a 5-tree routing solution

achieves nearly the same maximum multicast rate achieved by network coding. The

routing solution, however, suffered from a dramatic increase in running time: average time

of 111 seconds for 5-tree routing versus 0.028 seconds for network coding. Furthermore,

by looking at the energy-rate relationship in both paradigms, it is shown that energy

benefits of network coding are unevenly distributed. In particular, network coding benefit

grows as multicast rate demand approaches maximum achievable rate. In the lower rates,

the energy offered by routing and network coding solutions are mostly equal. Another

advantage of network coding, again, is its much lower convergence time.

• To support the experimental evidence given for the effectiveness of the small random

subsets of MISs, we also take an analytical approach to the problem. The maximum flow

problem, as the core problem in network coding multicast, is considered. It is shown that

given a large enough grid network, the upper-bound rate of 1 is always achievable by

using only three independent sets.

In conclusion, the combination of polynomial-time and effective scheduling heuristic, and

linear formulation of network coding, provides an online algorithm for rate and energy optimiza-

tion is wireless multicast. The fact that scheduling and network coding both rely on random

selection, of MISs and network codes respectively, makes both methods easy to implement.
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One direction for future work involves examining the energy-rate and delay-rate non-

linearity in more general or realistic network models, e.g., lossy channel models, physical

interference model, and multiple transmission powers. Theoretical explanation of these re-

lationships, although difficult due to the multi-level complexity of the problem, is yet another

direction. The whole study can also be extended for multiple multicast sessions with varied

session sizes.
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